A convolutional neural-network framework for modelling auditory sensory cells and synapses

Drakopoulos et al developed a machine-learning and computational-neuroscience approach that transforms analytical models of sensory neurons and synapses into deep-neural-network (DNN) neuronal units with the same biophysical properties. Focusing on auditory neurons and synapses, they showed that the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fotios Drakopoulos, Deepak Baby, Sarah Verhulst
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/c5801428ff8749b5922186c0d9f89358
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c5801428ff8749b5922186c0d9f89358
record_format dspace
spelling oai:doaj.org-article:c5801428ff8749b5922186c0d9f893582021-12-02T16:10:32ZA convolutional neural-network framework for modelling auditory sensory cells and synapses10.1038/s42003-021-02341-52399-3642https://doaj.org/article/c5801428ff8749b5922186c0d9f893582021-07-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02341-5https://doaj.org/toc/2399-3642Drakopoulos et al developed a machine-learning and computational-neuroscience approach that transforms analytical models of sensory neurons and synapses into deep-neural-network (DNN) neuronal units with the same biophysical properties. Focusing on auditory neurons and synapses, they showed that their DNN-model architecture could be extended to a variety of existing analytical models and to other neuron and synapse types, thus potentially assisting the development of large-scale brain networks and DNN-based treatments.Fotios DrakopoulosDeepak BabySarah VerhulstNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-17 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Fotios Drakopoulos
Deepak Baby
Sarah Verhulst
A convolutional neural-network framework for modelling auditory sensory cells and synapses
description Drakopoulos et al developed a machine-learning and computational-neuroscience approach that transforms analytical models of sensory neurons and synapses into deep-neural-network (DNN) neuronal units with the same biophysical properties. Focusing on auditory neurons and synapses, they showed that their DNN-model architecture could be extended to a variety of existing analytical models and to other neuron and synapse types, thus potentially assisting the development of large-scale brain networks and DNN-based treatments.
format article
author Fotios Drakopoulos
Deepak Baby
Sarah Verhulst
author_facet Fotios Drakopoulos
Deepak Baby
Sarah Verhulst
author_sort Fotios Drakopoulos
title A convolutional neural-network framework for modelling auditory sensory cells and synapses
title_short A convolutional neural-network framework for modelling auditory sensory cells and synapses
title_full A convolutional neural-network framework for modelling auditory sensory cells and synapses
title_fullStr A convolutional neural-network framework for modelling auditory sensory cells and synapses
title_full_unstemmed A convolutional neural-network framework for modelling auditory sensory cells and synapses
title_sort convolutional neural-network framework for modelling auditory sensory cells and synapses
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c5801428ff8749b5922186c0d9f89358
work_keys_str_mv AT fotiosdrakopoulos aconvolutionalneuralnetworkframeworkformodellingauditorysensorycellsandsynapses
AT deepakbaby aconvolutionalneuralnetworkframeworkformodellingauditorysensorycellsandsynapses
AT sarahverhulst aconvolutionalneuralnetworkframeworkformodellingauditorysensorycellsandsynapses
AT fotiosdrakopoulos convolutionalneuralnetworkframeworkformodellingauditorysensorycellsandsynapses
AT deepakbaby convolutionalneuralnetworkframeworkformodellingauditorysensorycellsandsynapses
AT sarahverhulst convolutionalneuralnetworkframeworkformodellingauditorysensorycellsandsynapses
_version_ 1718384437121515520