Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies
Abstract A comprehensive characterization of tumor genetic heterogeneity is critical for understanding how cancers evolve and escape treatment. Although many algorithms have been developed for capturing tumor heterogeneity, they are designed for analyzing either a single type of genomic aberration o...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c58b18b457184aafaf83bba3e97a5fdf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c58b18b457184aafaf83bba3e97a5fdf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c58b18b457184aafaf83bba3e97a5fdf2021-12-02T15:06:16ZComprehensive statistical inference of the clonal structure of cancer from multiple biopsies10.1038/s41598-017-16813-42045-2322https://doaj.org/article/c58b18b457184aafaf83bba3e97a5fdf2017-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-16813-4https://doaj.org/toc/2045-2322Abstract A comprehensive characterization of tumor genetic heterogeneity is critical for understanding how cancers evolve and escape treatment. Although many algorithms have been developed for capturing tumor heterogeneity, they are designed for analyzing either a single type of genomic aberration or individual biopsies. Here we present THEMIS (Tumor Heterogeneity Extensible Modeling via an Integrative System), which allows for the joint analysis of different types of genomic aberrations from multiple biopsies taken from the same patient, using a dynamic graphical model. Simulation experiments demonstrate higher accuracy of THEMIS over its ancestor, TITAN. The heterogeneity analysis results from THEMIS are validated with single cell DNA sequencing from a clinical tumor biopsy. When THEMIS is used to analyze tumor heterogeneity among multiple biopsies from the same patient, it helps to reveal the mutation accumulation history, track cancer progression, and identify the mutations related to treatment resistance. We implement our model via an extensible modeling platform, which makes our approach open, reproducible, and easy for others to extend.Jie LiuJohn T. HalloranJeffrey A. BilmesRiza M. DazaCholi LeeElisabeth M. MahenDonna PrunkardChaozhong SongSibel BlauMichael O. DorschnerVijayakrishna K. GadiJay ShendureC. Anthony BlauWilliam S. NobleNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jie Liu John T. Halloran Jeffrey A. Bilmes Riza M. Daza Choli Lee Elisabeth M. Mahen Donna Prunkard Chaozhong Song Sibel Blau Michael O. Dorschner Vijayakrishna K. Gadi Jay Shendure C. Anthony Blau William S. Noble Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies |
description |
Abstract A comprehensive characterization of tumor genetic heterogeneity is critical for understanding how cancers evolve and escape treatment. Although many algorithms have been developed for capturing tumor heterogeneity, they are designed for analyzing either a single type of genomic aberration or individual biopsies. Here we present THEMIS (Tumor Heterogeneity Extensible Modeling via an Integrative System), which allows for the joint analysis of different types of genomic aberrations from multiple biopsies taken from the same patient, using a dynamic graphical model. Simulation experiments demonstrate higher accuracy of THEMIS over its ancestor, TITAN. The heterogeneity analysis results from THEMIS are validated with single cell DNA sequencing from a clinical tumor biopsy. When THEMIS is used to analyze tumor heterogeneity among multiple biopsies from the same patient, it helps to reveal the mutation accumulation history, track cancer progression, and identify the mutations related to treatment resistance. We implement our model via an extensible modeling platform, which makes our approach open, reproducible, and easy for others to extend. |
format |
article |
author |
Jie Liu John T. Halloran Jeffrey A. Bilmes Riza M. Daza Choli Lee Elisabeth M. Mahen Donna Prunkard Chaozhong Song Sibel Blau Michael O. Dorschner Vijayakrishna K. Gadi Jay Shendure C. Anthony Blau William S. Noble |
author_facet |
Jie Liu John T. Halloran Jeffrey A. Bilmes Riza M. Daza Choli Lee Elisabeth M. Mahen Donna Prunkard Chaozhong Song Sibel Blau Michael O. Dorschner Vijayakrishna K. Gadi Jay Shendure C. Anthony Blau William S. Noble |
author_sort |
Jie Liu |
title |
Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies |
title_short |
Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies |
title_full |
Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies |
title_fullStr |
Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies |
title_full_unstemmed |
Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies |
title_sort |
comprehensive statistical inference of the clonal structure of cancer from multiple biopsies |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/c58b18b457184aafaf83bba3e97a5fdf |
work_keys_str_mv |
AT jieliu comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT johnthalloran comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT jeffreyabilmes comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT rizamdaza comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT cholilee comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT elisabethmmahen comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT donnaprunkard comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT chaozhongsong comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT sibelblau comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT michaelodorschner comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT vijayakrishnakgadi comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT jayshendure comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT canthonyblau comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies AT williamsnoble comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies |
_version_ |
1718388540937601024 |