Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies

Abstract A comprehensive characterization of tumor genetic heterogeneity is critical for understanding how cancers evolve and escape treatment. Although many algorithms have been developed for capturing tumor heterogeneity, they are designed for analyzing either a single type of genomic aberration o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jie Liu, John T. Halloran, Jeffrey A. Bilmes, Riza M. Daza, Choli Lee, Elisabeth M. Mahen, Donna Prunkard, Chaozhong Song, Sibel Blau, Michael O. Dorschner, Vijayakrishna K. Gadi, Jay Shendure, C. Anthony Blau, William S. Noble
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c58b18b457184aafaf83bba3e97a5fdf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c58b18b457184aafaf83bba3e97a5fdf
record_format dspace
spelling oai:doaj.org-article:c58b18b457184aafaf83bba3e97a5fdf2021-12-02T15:06:16ZComprehensive statistical inference of the clonal structure of cancer from multiple biopsies10.1038/s41598-017-16813-42045-2322https://doaj.org/article/c58b18b457184aafaf83bba3e97a5fdf2017-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-16813-4https://doaj.org/toc/2045-2322Abstract A comprehensive characterization of tumor genetic heterogeneity is critical for understanding how cancers evolve and escape treatment. Although many algorithms have been developed for capturing tumor heterogeneity, they are designed for analyzing either a single type of genomic aberration or individual biopsies. Here we present THEMIS (Tumor Heterogeneity Extensible Modeling via an Integrative System), which allows for the joint analysis of different types of genomic aberrations from multiple biopsies taken from the same patient, using a dynamic graphical model. Simulation experiments demonstrate higher accuracy of THEMIS over its ancestor, TITAN. The heterogeneity analysis results from THEMIS are validated with single cell DNA sequencing from a clinical tumor biopsy. When THEMIS is used to analyze tumor heterogeneity among multiple biopsies from the same patient, it helps to reveal the mutation accumulation history, track cancer progression, and identify the mutations related to treatment resistance. We implement our model via an extensible modeling platform, which makes our approach open, reproducible, and easy for others to extend.Jie LiuJohn T. HalloranJeffrey A. BilmesRiza M. DazaCholi LeeElisabeth M. MahenDonna PrunkardChaozhong SongSibel BlauMichael O. DorschnerVijayakrishna K. GadiJay ShendureC. Anthony BlauWilliam S. NobleNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jie Liu
John T. Halloran
Jeffrey A. Bilmes
Riza M. Daza
Choli Lee
Elisabeth M. Mahen
Donna Prunkard
Chaozhong Song
Sibel Blau
Michael O. Dorschner
Vijayakrishna K. Gadi
Jay Shendure
C. Anthony Blau
William S. Noble
Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies
description Abstract A comprehensive characterization of tumor genetic heterogeneity is critical for understanding how cancers evolve and escape treatment. Although many algorithms have been developed for capturing tumor heterogeneity, they are designed for analyzing either a single type of genomic aberration or individual biopsies. Here we present THEMIS (Tumor Heterogeneity Extensible Modeling via an Integrative System), which allows for the joint analysis of different types of genomic aberrations from multiple biopsies taken from the same patient, using a dynamic graphical model. Simulation experiments demonstrate higher accuracy of THEMIS over its ancestor, TITAN. The heterogeneity analysis results from THEMIS are validated with single cell DNA sequencing from a clinical tumor biopsy. When THEMIS is used to analyze tumor heterogeneity among multiple biopsies from the same patient, it helps to reveal the mutation accumulation history, track cancer progression, and identify the mutations related to treatment resistance. We implement our model via an extensible modeling platform, which makes our approach open, reproducible, and easy for others to extend.
format article
author Jie Liu
John T. Halloran
Jeffrey A. Bilmes
Riza M. Daza
Choli Lee
Elisabeth M. Mahen
Donna Prunkard
Chaozhong Song
Sibel Blau
Michael O. Dorschner
Vijayakrishna K. Gadi
Jay Shendure
C. Anthony Blau
William S. Noble
author_facet Jie Liu
John T. Halloran
Jeffrey A. Bilmes
Riza M. Daza
Choli Lee
Elisabeth M. Mahen
Donna Prunkard
Chaozhong Song
Sibel Blau
Michael O. Dorschner
Vijayakrishna K. Gadi
Jay Shendure
C. Anthony Blau
William S. Noble
author_sort Jie Liu
title Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies
title_short Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies
title_full Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies
title_fullStr Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies
title_full_unstemmed Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies
title_sort comprehensive statistical inference of the clonal structure of cancer from multiple biopsies
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/c58b18b457184aafaf83bba3e97a5fdf
work_keys_str_mv AT jieliu comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT johnthalloran comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT jeffreyabilmes comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT rizamdaza comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT cholilee comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT elisabethmmahen comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT donnaprunkard comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT chaozhongsong comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT sibelblau comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT michaelodorschner comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT vijayakrishnakgadi comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT jayshendure comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT canthonyblau comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
AT williamsnoble comprehensivestatisticalinferenceoftheclonalstructureofcancerfrommultiplebiopsies
_version_ 1718388540937601024