Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications
Muhammad Tahir Haseeb,1,2 Muhammad Ajaz Hussain,3 Khawar Abbas,3 Bahaa GM Youssif,4,5 Sajid Bashir,1 Soon Hong Yuk,2 Syed Nasir Abbas Bukhari5 1Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan; 2College of Pharmacy, Korea University, Sejong, Republic of Korea; 3Department of Chemistr...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c58ba6950c834be9a40191e01c503858 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c58ba6950c834be9a40191e01c503858 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c58ba6950c834be9a40191e01c5038582021-12-02T05:39:44ZLinseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications1178-2013https://doaj.org/article/c58ba6950c834be9a40191e01c5038582017-04-01T00:00:00Zhttps://www.dovepress.com/linseed-hydrogel-mediated-green-synthesis-of-silver-nanoparticles-for--peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Muhammad Tahir Haseeb,1,2 Muhammad Ajaz Hussain,3 Khawar Abbas,3 Bahaa GM Youssif,4,5 Sajid Bashir,1 Soon Hong Yuk,2 Syed Nasir Abbas Bukhari5 1Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan; 2College of Pharmacy, Korea University, Sejong, Republic of Korea; 3Department of Chemistry, University of Sargodha, Sargodha, Pakistan; 4Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt; 5Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka, Saudi Arabia Abstract: Polysaccharides are being extensively employed for the synthesis of silver nanoparticles (Ag NPs) having diverse morphology and applications. Herein, we present a novel and green synthesis of Ag NPs without using any physical reaction conditions. Linseed hydrogel (LSH) was used as a template to reduce Ag+ to Ag0. AgNO3 (10, 20, and 30 mmol) solutions were mixed with LSH suspension in deionized water and exposed to diffused sunlight. Reaction was monitored by noting the change in the color of reaction mixture up to 10 h. Ag NPs showed characteristic ultraviolet-visible (UV/Vis) absorptions from 410 to 437 nm in the case of sunlight and 397–410 nm in the case of temperature study. Transmission electron microscopy images revealed the formation of spherical Ag NPs in the range of 10–35 nm. Face-centered cubic array of Ag NPs was confirmed by characteristic diffraction peaks in powder X-ray diffraction spectrum. Ag NPs were stored in LSH thin films, and UV/Vis spectra recorded after 6 months indicated that Ag NPs retained their texture over the storage period. Significant antimicrobial activity was observed when microbial cultures (bacteria and fungi) were exposed to the synthesized Ag NPs. Wound-healing studies revealed that Ag NP–impregnated LSH thin films could have potential applications as an antimicrobial dressing in wound management procedures. Keywords: silver nanoparticles, green synthesis, antimicrobial studies, wound dressing, storage and stabilityHaseeb MTHussain MAAbbas KYoussif BGMBashir SYuk SHBukhari SNDove Medical PressarticleSilver nanoparticlesgreen synthesisantimicrobial studieswound dressingstorage and stabilityMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 12, Pp 2845-2855 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Silver nanoparticles green synthesis antimicrobial studies wound dressing storage and stability Medicine (General) R5-920 |
spellingShingle |
Silver nanoparticles green synthesis antimicrobial studies wound dressing storage and stability Medicine (General) R5-920 Haseeb MT Hussain MA Abbas K Youssif BGM Bashir S Yuk SH Bukhari SN Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications |
description |
Muhammad Tahir Haseeb,1,2 Muhammad Ajaz Hussain,3 Khawar Abbas,3 Bahaa GM Youssif,4,5 Sajid Bashir,1 Soon Hong Yuk,2 Syed Nasir Abbas Bukhari5 1Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan; 2College of Pharmacy, Korea University, Sejong, Republic of Korea; 3Department of Chemistry, University of Sargodha, Sargodha, Pakistan; 4Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt; 5Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka, Saudi Arabia Abstract: Polysaccharides are being extensively employed for the synthesis of silver nanoparticles (Ag NPs) having diverse morphology and applications. Herein, we present a novel and green synthesis of Ag NPs without using any physical reaction conditions. Linseed hydrogel (LSH) was used as a template to reduce Ag+ to Ag0. AgNO3 (10, 20, and 30 mmol) solutions were mixed with LSH suspension in deionized water and exposed to diffused sunlight. Reaction was monitored by noting the change in the color of reaction mixture up to 10 h. Ag NPs showed characteristic ultraviolet-visible (UV/Vis) absorptions from 410 to 437 nm in the case of sunlight and 397–410 nm in the case of temperature study. Transmission electron microscopy images revealed the formation of spherical Ag NPs in the range of 10–35 nm. Face-centered cubic array of Ag NPs was confirmed by characteristic diffraction peaks in powder X-ray diffraction spectrum. Ag NPs were stored in LSH thin films, and UV/Vis spectra recorded after 6 months indicated that Ag NPs retained their texture over the storage period. Significant antimicrobial activity was observed when microbial cultures (bacteria and fungi) were exposed to the synthesized Ag NPs. Wound-healing studies revealed that Ag NP–impregnated LSH thin films could have potential applications as an antimicrobial dressing in wound management procedures. Keywords: silver nanoparticles, green synthesis, antimicrobial studies, wound dressing, storage and stability |
format |
article |
author |
Haseeb MT Hussain MA Abbas K Youssif BGM Bashir S Yuk SH Bukhari SN |
author_facet |
Haseeb MT Hussain MA Abbas K Youssif BGM Bashir S Yuk SH Bukhari SN |
author_sort |
Haseeb MT |
title |
Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications |
title_short |
Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications |
title_full |
Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications |
title_fullStr |
Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications |
title_full_unstemmed |
Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications |
title_sort |
linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications |
publisher |
Dove Medical Press |
publishDate |
2017 |
url |
https://doaj.org/article/c58ba6950c834be9a40191e01c503858 |
work_keys_str_mv |
AT haseebmt linseedhydrogelmediatedgreensynthesisofsilvernanoparticlesforantimicrobialandwounddressingapplications AT hussainma linseedhydrogelmediatedgreensynthesisofsilvernanoparticlesforantimicrobialandwounddressingapplications AT abbask linseedhydrogelmediatedgreensynthesisofsilvernanoparticlesforantimicrobialandwounddressingapplications AT youssifbgm linseedhydrogelmediatedgreensynthesisofsilvernanoparticlesforantimicrobialandwounddressingapplications AT bashirs linseedhydrogelmediatedgreensynthesisofsilvernanoparticlesforantimicrobialandwounddressingapplications AT yuksh linseedhydrogelmediatedgreensynthesisofsilvernanoparticlesforantimicrobialandwounddressingapplications AT bukharisn linseedhydrogelmediatedgreensynthesisofsilvernanoparticlesforantimicrobialandwounddressingapplications |
_version_ |
1718400321007386624 |