Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces

The mechanisms behind origami having saddle shapes made from concentrically pleated squares remain elusive. Here, the authors connect geometry and mechanics to show that this type of origami is invariantly a hyperbolic paraboloid that exhibits bistability between two symmetric configurations.

Guardado en:
Detalles Bibliográficos
Autores principales: Ke Liu, Tomohiro Tachi, Glaucio H. Paulino
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/c58bc7b9a07b462bbfb35f1608bee965
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c58bc7b9a07b462bbfb35f1608bee965
record_format dspace
spelling oai:doaj.org-article:c58bc7b9a07b462bbfb35f1608bee9652021-12-02T17:02:15ZInvariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces10.1038/s41467-019-11935-x2041-1723https://doaj.org/article/c58bc7b9a07b462bbfb35f1608bee9652019-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-11935-xhttps://doaj.org/toc/2041-1723The mechanisms behind origami having saddle shapes made from concentrically pleated squares remain elusive. Here, the authors connect geometry and mechanics to show that this type of origami is invariantly a hyperbolic paraboloid that exhibits bistability between two symmetric configurations.Ke LiuTomohiro TachiGlaucio H. PaulinoNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ke Liu
Tomohiro Tachi
Glaucio H. Paulino
Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces
description The mechanisms behind origami having saddle shapes made from concentrically pleated squares remain elusive. Here, the authors connect geometry and mechanics to show that this type of origami is invariantly a hyperbolic paraboloid that exhibits bistability between two symmetric configurations.
format article
author Ke Liu
Tomohiro Tachi
Glaucio H. Paulino
author_facet Ke Liu
Tomohiro Tachi
Glaucio H. Paulino
author_sort Ke Liu
title Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces
title_short Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces
title_full Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces
title_fullStr Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces
title_full_unstemmed Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces
title_sort invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/c58bc7b9a07b462bbfb35f1608bee965
work_keys_str_mv AT keliu invariantandsmoothlimitofdiscretegeometryfoldedfrombistableorigamileadingtomultistablemetasurfaces
AT tomohirotachi invariantandsmoothlimitofdiscretegeometryfoldedfrombistableorigamileadingtomultistablemetasurfaces
AT glauciohpaulino invariantandsmoothlimitofdiscretegeometryfoldedfrombistableorigamileadingtomultistablemetasurfaces
_version_ 1718381932152094720