Volume Integral Equation Method Solution for Spheroidal Inclusion Problem
In this paper, the volume integral equation method (VIEM) is introduced for the numerical analysis of an infinite isotropic solid containing a variety of single isotropic/anisotropic spheroidal inclusions. In order to introduce the VIEM as a versatile numerical method for the three-dimensional elast...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c59a361d0edf40099fff18702538518b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c59a361d0edf40099fff18702538518b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c59a361d0edf40099fff18702538518b2021-11-25T18:15:34ZVolume Integral Equation Method Solution for Spheroidal Inclusion Problem10.3390/ma142269961996-1944https://doaj.org/article/c59a361d0edf40099fff18702538518b2021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/22/6996https://doaj.org/toc/1996-1944In this paper, the volume integral equation method (VIEM) is introduced for the numerical analysis of an infinite isotropic solid containing a variety of single isotropic/anisotropic spheroidal inclusions. In order to introduce the VIEM as a versatile numerical method for the three-dimensional elastostatic inclusion problem, VIEM results are first presented for a range of single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under uniform remote tensile loading. We next considered single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under remote shear loading. The authors hope that the results using the VIEM cited in this paper will be established as reference values for verifying the results of similar research using other analytical and numerical methods.Jungki LeeMingu HanMDPI AGarticlevolume integral equation method (VIEM)isotropic/anisotropic inclusion problemsboundary element method (BEM)standard finite element method (FEM)TechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6996, p 6996 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
volume integral equation method (VIEM) isotropic/anisotropic inclusion problems boundary element method (BEM) standard finite element method (FEM) Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
spellingShingle |
volume integral equation method (VIEM) isotropic/anisotropic inclusion problems boundary element method (BEM) standard finite element method (FEM) Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 Jungki Lee Mingu Han Volume Integral Equation Method Solution for Spheroidal Inclusion Problem |
description |
In this paper, the volume integral equation method (VIEM) is introduced for the numerical analysis of an infinite isotropic solid containing a variety of single isotropic/anisotropic spheroidal inclusions. In order to introduce the VIEM as a versatile numerical method for the three-dimensional elastostatic inclusion problem, VIEM results are first presented for a range of single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under uniform remote tensile loading. We next considered single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under remote shear loading. The authors hope that the results using the VIEM cited in this paper will be established as reference values for verifying the results of similar research using other analytical and numerical methods. |
format |
article |
author |
Jungki Lee Mingu Han |
author_facet |
Jungki Lee Mingu Han |
author_sort |
Jungki Lee |
title |
Volume Integral Equation Method Solution for Spheroidal Inclusion Problem |
title_short |
Volume Integral Equation Method Solution for Spheroidal Inclusion Problem |
title_full |
Volume Integral Equation Method Solution for Spheroidal Inclusion Problem |
title_fullStr |
Volume Integral Equation Method Solution for Spheroidal Inclusion Problem |
title_full_unstemmed |
Volume Integral Equation Method Solution for Spheroidal Inclusion Problem |
title_sort |
volume integral equation method solution for spheroidal inclusion problem |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/c59a361d0edf40099fff18702538518b |
work_keys_str_mv |
AT jungkilee volumeintegralequationmethodsolutionforspheroidalinclusionproblem AT minguhan volumeintegralequationmethodsolutionforspheroidalinclusionproblem |
_version_ |
1718411464305278976 |