Volume Integral Equation Method Solution for Spheroidal Inclusion Problem

In this paper, the volume integral equation method (VIEM) is introduced for the numerical analysis of an infinite isotropic solid containing a variety of single isotropic/anisotropic spheroidal inclusions. In order to introduce the VIEM as a versatile numerical method for the three-dimensional elast...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jungki Lee, Mingu Han
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/c59a361d0edf40099fff18702538518b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c59a361d0edf40099fff18702538518b
record_format dspace
spelling oai:doaj.org-article:c59a361d0edf40099fff18702538518b2021-11-25T18:15:34ZVolume Integral Equation Method Solution for Spheroidal Inclusion Problem10.3390/ma142269961996-1944https://doaj.org/article/c59a361d0edf40099fff18702538518b2021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/22/6996https://doaj.org/toc/1996-1944In this paper, the volume integral equation method (VIEM) is introduced for the numerical analysis of an infinite isotropic solid containing a variety of single isotropic/anisotropic spheroidal inclusions. In order to introduce the VIEM as a versatile numerical method for the three-dimensional elastostatic inclusion problem, VIEM results are first presented for a range of single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under uniform remote tensile loading. We next considered single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under remote shear loading. The authors hope that the results using the VIEM cited in this paper will be established as reference values for verifying the results of similar research using other analytical and numerical methods.Jungki LeeMingu HanMDPI AGarticlevolume integral equation method (VIEM)isotropic/anisotropic inclusion problemsboundary element method (BEM)standard finite element method (FEM)TechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6996, p 6996 (2021)
institution DOAJ
collection DOAJ
language EN
topic volume integral equation method (VIEM)
isotropic/anisotropic inclusion problems
boundary element method (BEM)
standard finite element method (FEM)
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
spellingShingle volume integral equation method (VIEM)
isotropic/anisotropic inclusion problems
boundary element method (BEM)
standard finite element method (FEM)
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Jungki Lee
Mingu Han
Volume Integral Equation Method Solution for Spheroidal Inclusion Problem
description In this paper, the volume integral equation method (VIEM) is introduced for the numerical analysis of an infinite isotropic solid containing a variety of single isotropic/anisotropic spheroidal inclusions. In order to introduce the VIEM as a versatile numerical method for the three-dimensional elastostatic inclusion problem, VIEM results are first presented for a range of single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under uniform remote tensile loading. We next considered single isotropic/orthotropic spherical, prolate and oblate spheroidal inclusions in an infinite isotropic matrix under remote shear loading. The authors hope that the results using the VIEM cited in this paper will be established as reference values for verifying the results of similar research using other analytical and numerical methods.
format article
author Jungki Lee
Mingu Han
author_facet Jungki Lee
Mingu Han
author_sort Jungki Lee
title Volume Integral Equation Method Solution for Spheroidal Inclusion Problem
title_short Volume Integral Equation Method Solution for Spheroidal Inclusion Problem
title_full Volume Integral Equation Method Solution for Spheroidal Inclusion Problem
title_fullStr Volume Integral Equation Method Solution for Spheroidal Inclusion Problem
title_full_unstemmed Volume Integral Equation Method Solution for Spheroidal Inclusion Problem
title_sort volume integral equation method solution for spheroidal inclusion problem
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/c59a361d0edf40099fff18702538518b
work_keys_str_mv AT jungkilee volumeintegralequationmethodsolutionforspheroidalinclusionproblem
AT minguhan volumeintegralequationmethodsolutionforspheroidalinclusionproblem
_version_ 1718411464305278976