An interpretable approach for social network formation among heterogeneous agents
Complex networks can be a useful tool to investigate problems in social science. Here the authors use game theory to establish a network model and then use a machine learning approach to characterize the role of nodes within a social network.
Guardado en:
Autores principales: | Yuan Yuan, Ahmad Alabdulkareem, Alex ‘Sandy’ Pentland |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c5a02d4482f04595b7ba998a0e9dd4cb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MultiVERSE: a multiplex and multiplex-heterogeneous network embedding approach
por: Léo Pio-Lopez, et al.
Publicado: (2021) -
Network heterogeneity regulates steering in actin-based motility
por: Rajaa Boujemaa-Paterski, et al.
Publicado: (2017) -
Cell Dispersal Influences Tumor Heterogeneity and Introduces a Bias in NGS Data Interpretation
por: Lőrinc Pongor, et al.
Publicado: (2017) -
Network analysis as an alternative way to interpret constitutions.
por: Rafael Silveira E Silva
Publicado: (2021) -
Network analysis as an alternative way to interpret constitutions
por: Rafael Silveira e Silva
Publicado: (2021)