Computer-aided discovery of a metal–organic framework with superior oxygen uptake
The emergence of thousands of metal–organic frameworks (MOFs) has created the challenge of finding promising structures for particular applications. Here, the authors present a tool for computer-aided material discovery where a large number of MOFs are screened, with the top-ranked structure synthes...
Enregistré dans:
| Auteurs principaux: | Peyman Z. Moghadam, Timur Islamoglu, Subhadip Goswami, Jason Exley, Marcus Fantham, Clemens F. Kaminski, Randall Q. Snurr, Omar K. Farha, David Fairen-Jimenez |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2018
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/c5ac0ca198fc4a5faf83881675cb6052 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Computer-aided discovery of connected metal-organic frameworks
par: Ohmin Kwon, et autres
Publié: (2019) -
Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates
par: Hasan Babaei, et autres
Publié: (2020) -
Computer-Aided Discovery of Pentapeptide AEYTR as a Potent Acetylcholinesterase Inhibitor
par: Enade Perdana Istyastono, et autres
Publié: (2020) -
Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances
par: Abut F, et autres
Publié: (2015) -
Silicon and oxygen synergistic effects for the discovery of new high-performance nonfullerene acceptors
par: Ying Qin, et autres
Publié: (2020)