Parameter estimation of Muskingum model using grey wolf optimizer algorithm
Flood routing plays a crucial role in prevention of major economic and human losses, which, in this study, has been conducted via both three- and four-constant parameter non-linear Muskingum models for four hydrographs, along with the Grey Wolf Optimizer (GWO) algorithm. Three benchmark examples and...
Guardado en:
Autores principales: | Reyhaneh Akbari, Masoud-Reza Hessami-Kermani |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c5ad4fc262114ca887886731596d5f48 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows
por: Eui Hoon Lee
Publicado: (2021) -
Effects of uncertainty in determining the parameters of the linear Muskingum method using the particle swarm optimization (PSO) algorithm
por: Hadi Norouzi, et al.
Publicado: (2021) -
Towards design of compound channels with minimum overall cost through grey wolf optimization algorithm
por: Kiyoumars Roushangar, et al.
Publicado: (2021) -
GPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain
por: Xingkun He, et al.
Publicado: (2021) -
Simultaneous optimal integration of photovoltaic distributed generation and battery energy storage system in active distribution network using chaotic grey wolf optimization
por: N. Belbachir, et al.
Publicado: (2021)