Development Length of Fluids Modelled by the gPTT Constitutive Differential Equation

In this work, we present a numerical study on the development length (the length from the channel inlet required for the velocity to reach <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99</m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Juliana Bertoco, Rosalía T. Leiva, Luís L. Ferrás, Alexandre M. Afonso, Antonio Castelo
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/c5b10d0a48c34e5a9acccc1cc53686fa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c5b10d0a48c34e5a9acccc1cc53686fa
record_format dspace
spelling oai:doaj.org-article:c5b10d0a48c34e5a9acccc1cc53686fa2021-11-11T15:23:42ZDevelopment Length of Fluids Modelled by the gPTT Constitutive Differential Equation10.3390/app1121103522076-3417https://doaj.org/article/c5b10d0a48c34e5a9acccc1cc53686fa2021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/10352https://doaj.org/toc/2076-3417In this work, we present a numerical study on the development length (the length from the channel inlet required for the velocity to reach <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99</mn><mo>%</mo></mrow></semantics></math></inline-formula> of its fully-developed value) of a pressure-driven viscoelastic fluid flow (between parallel plates) modelled by the generalised Phan–Thien and Tanner (gPTT) constitutive equation. The governing equations are solved using the finite-difference method, and, a thorough analysis on the effect of the model parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is presented. The numerical results showed that in the creeping flow limit (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>), the development length for the velocity exhibits a non-monotonic behaviour. The development length increases with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>i</mi></mrow></semantics></math></inline-formula>. For low values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>i</mi></mrow></semantics></math></inline-formula>, the highest value of the development length is obtained for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mi>β</mi><mo>=</mo><mn>0.5</mn></mrow></semantics></math></inline-formula>; for high values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>i</mi></mrow></semantics></math></inline-formula>, the highest value of the development length is obtained for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mi>β</mi><mo>=</mo><mn>1.5</mn></mrow></semantics></math></inline-formula>. This work also considers the influence of the elasticity number.Juliana BertocoRosalía T. LeivaLuís L. FerrásAlexandre M. AfonsoAntonio CasteloMDPI AGarticleviscoelastic fluidsgeneralised PTT modelfinite-differencesdevelopment lengthTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10352, p 10352 (2021)
institution DOAJ
collection DOAJ
language EN
topic viscoelastic fluids
generalised PTT model
finite-differences
development length
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
spellingShingle viscoelastic fluids
generalised PTT model
finite-differences
development length
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Juliana Bertoco
Rosalía T. Leiva
Luís L. Ferrás
Alexandre M. Afonso
Antonio Castelo
Development Length of Fluids Modelled by the gPTT Constitutive Differential Equation
description In this work, we present a numerical study on the development length (the length from the channel inlet required for the velocity to reach <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>99</mn><mo>%</mo></mrow></semantics></math></inline-formula> of its fully-developed value) of a pressure-driven viscoelastic fluid flow (between parallel plates) modelled by the generalised Phan–Thien and Tanner (gPTT) constitutive equation. The governing equations are solved using the finite-difference method, and, a thorough analysis on the effect of the model parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is presented. The numerical results showed that in the creeping flow limit (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>), the development length for the velocity exhibits a non-monotonic behaviour. The development length increases with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>i</mi></mrow></semantics></math></inline-formula>. For low values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>i</mi></mrow></semantics></math></inline-formula>, the highest value of the development length is obtained for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mi>β</mi><mo>=</mo><mn>0.5</mn></mrow></semantics></math></inline-formula>; for high values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mi>i</mi></mrow></semantics></math></inline-formula>, the highest value of the development length is obtained for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mi>β</mi><mo>=</mo><mn>1.5</mn></mrow></semantics></math></inline-formula>. This work also considers the influence of the elasticity number.
format article
author Juliana Bertoco
Rosalía T. Leiva
Luís L. Ferrás
Alexandre M. Afonso
Antonio Castelo
author_facet Juliana Bertoco
Rosalía T. Leiva
Luís L. Ferrás
Alexandre M. Afonso
Antonio Castelo
author_sort Juliana Bertoco
title Development Length of Fluids Modelled by the gPTT Constitutive Differential Equation
title_short Development Length of Fluids Modelled by the gPTT Constitutive Differential Equation
title_full Development Length of Fluids Modelled by the gPTT Constitutive Differential Equation
title_fullStr Development Length of Fluids Modelled by the gPTT Constitutive Differential Equation
title_full_unstemmed Development Length of Fluids Modelled by the gPTT Constitutive Differential Equation
title_sort development length of fluids modelled by the gptt constitutive differential equation
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/c5b10d0a48c34e5a9acccc1cc53686fa
work_keys_str_mv AT julianabertoco developmentlengthoffluidsmodelledbythegpttconstitutivedifferentialequation
AT rosaliatleiva developmentlengthoffluidsmodelledbythegpttconstitutivedifferentialequation
AT luislferras developmentlengthoffluidsmodelledbythegpttconstitutivedifferentialequation
AT alexandremafonso developmentlengthoffluidsmodelledbythegpttconstitutivedifferentialequation
AT antoniocastelo developmentlengthoffluidsmodelledbythegpttconstitutivedifferentialequation
_version_ 1718435391929843712