Quantifying non-ergodicity of anomalous diffusion with higher order moments
Abstract Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the in...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c5b5a642e8074a58b75d073239cd1234 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c5b5a642e8074a58b75d073239cd1234 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c5b5a642e8074a58b75d073239cd12342021-12-02T11:51:13ZQuantifying non-ergodicity of anomalous diffusion with higher order moments10.1038/s41598-017-03712-x2045-2322https://doaj.org/article/c5b5a642e8074a58b75d073239cd12342017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03712-xhttps://doaj.org/toc/2045-2322Abstract Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes.Maria SchwarzlAljaž GodecRalf MetzlerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-18 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Maria Schwarzl Aljaž Godec Ralf Metzler Quantifying non-ergodicity of anomalous diffusion with higher order moments |
description |
Abstract Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes. |
format |
article |
author |
Maria Schwarzl Aljaž Godec Ralf Metzler |
author_facet |
Maria Schwarzl Aljaž Godec Ralf Metzler |
author_sort |
Maria Schwarzl |
title |
Quantifying non-ergodicity of anomalous diffusion with higher order moments |
title_short |
Quantifying non-ergodicity of anomalous diffusion with higher order moments |
title_full |
Quantifying non-ergodicity of anomalous diffusion with higher order moments |
title_fullStr |
Quantifying non-ergodicity of anomalous diffusion with higher order moments |
title_full_unstemmed |
Quantifying non-ergodicity of anomalous diffusion with higher order moments |
title_sort |
quantifying non-ergodicity of anomalous diffusion with higher order moments |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/c5b5a642e8074a58b75d073239cd1234 |
work_keys_str_mv |
AT mariaschwarzl quantifyingnonergodicityofanomalousdiffusionwithhigherordermoments AT aljazgodec quantifyingnonergodicityofanomalousdiffusionwithhigherordermoments AT ralfmetzler quantifyingnonergodicityofanomalousdiffusionwithhigherordermoments |
_version_ |
1718395189082456064 |