Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability

The alternating sector chain Ising problem features an exponentially small energy gap in the sector size, so one would expect an exponential decrease in success probability on a quantum annealing device. Here, instead, the authors show a nonmonotonic behavior, explaining it in terms of thermally acc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anurag Mishra, Tameem Albash, Daniel A. Lidar
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/c5f2b4f6e9e14fb098bc6662bd534912
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c5f2b4f6e9e14fb098bc6662bd534912
record_format dspace
spelling oai:doaj.org-article:c5f2b4f6e9e14fb098bc6662bd5349122021-12-02T17:33:17ZFinite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability10.1038/s41467-018-05239-92041-1723https://doaj.org/article/c5f2b4f6e9e14fb098bc6662bd5349122018-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05239-9https://doaj.org/toc/2041-1723The alternating sector chain Ising problem features an exponentially small energy gap in the sector size, so one would expect an exponential decrease in success probability on a quantum annealing device. Here, instead, the authors show a nonmonotonic behavior, explaining it in terms of thermally accessible states.Anurag MishraTameem AlbashDaniel A. LidarNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Anurag Mishra
Tameem Albash
Daniel A. Lidar
Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability
description The alternating sector chain Ising problem features an exponentially small energy gap in the sector size, so one would expect an exponential decrease in success probability on a quantum annealing device. Here, instead, the authors show a nonmonotonic behavior, explaining it in terms of thermally accessible states.
format article
author Anurag Mishra
Tameem Albash
Daniel A. Lidar
author_facet Anurag Mishra
Tameem Albash
Daniel A. Lidar
author_sort Anurag Mishra
title Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability
title_short Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability
title_full Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability
title_fullStr Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability
title_full_unstemmed Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability
title_sort finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/c5f2b4f6e9e14fb098bc6662bd534912
work_keys_str_mv AT anuragmishra finitetemperaturequantumannealingsolvingexponentiallysmallgapproblemwithnonmonotonicsuccessprobability
AT tameemalbash finitetemperaturequantumannealingsolvingexponentiallysmallgapproblemwithnonmonotonicsuccessprobability
AT danielalidar finitetemperaturequantumannealingsolvingexponentiallysmallgapproblemwithnonmonotonicsuccessprobability
_version_ 1718380026114605056