Prediction of Bacterial Contamination Outbursts in Water Wells through Sparse Coding
Abstract Maintaining water quality is critical for any water distribution company. One of the major concerns in water quality assurance, is bacterial contamination in water sources. To date, bacteria growth models cannot predict with sufficient accuracy when a bacteria outburst will occur in a water...
Guardado en:
Autores principales: | Levi Frolich, Dalit Vaizel-Ohayon, Barak Fishbain |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c5f6686f428e4be19f0202d15ddc488a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantifying and Understanding Well-to-Well Contamination in Microbiome Research
por: Jeremiah J. Minich, et al.
Publicado: (2019) -
Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.
por: Jonathan J Hunt, et al.
Publicado: (2013) -
Sewage outburst triggers Trichodesmium bloom and enhance N2 fixation rates
por: Eyal Rahav, et al.
Publicado: (2017) -
Geomorphic effects of recurrent outburst superfloods in the Yigong River on the southeastern margin of Tibet
por: Kaiheng Hu, et al.
Publicado: (2021) -
Efficient sparse coding in early sensory processing: lessons from signal recovery.
por: András Lörincz, et al.
Publicado: (2012)