Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
Physical principles underlying machine learning analysis of quantum gas microscopy data are not well understood. Here the authors develop a neural network based approach to classify image data in terms of multi-site correlation functions and reveal the role of fourth-order correlations in the Fermi-...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c5f988f964a14deb9630bb1251319555 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Physical principles underlying machine learning analysis of quantum gas microscopy data are not well understood. Here the authors develop a neural network based approach to classify image data in terms of multi-site correlation functions and reveal the role of fourth-order correlations in the Fermi-Hubbard model. |
---|