Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
Physical principles underlying machine learning analysis of quantum gas microscopy data are not well understood. Here the authors develop a neural network based approach to classify image data in terms of multi-site correlation functions and reveal the role of fourth-order correlations in the Fermi-...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c5f988f964a14deb9630bb1251319555 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c5f988f964a14deb9630bb1251319555 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c5f988f964a14deb9630bb12513195552021-12-02T17:12:24ZCorrelator convolutional neural networks as an interpretable architecture for image-like quantum matter data10.1038/s41467-021-23952-w2041-1723https://doaj.org/article/c5f988f964a14deb9630bb12513195552021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23952-whttps://doaj.org/toc/2041-1723Physical principles underlying machine learning analysis of quantum gas microscopy data are not well understood. Here the authors develop a neural network based approach to classify image data in terms of multi-site correlation functions and reveal the role of fourth-order correlations in the Fermi-Hubbard model.Cole MilesAnnabelle BohrdtRuihan WuChristie ChiuMuqing XuGeoffrey JiMarkus GreinerKilian Q. WeinbergerEugene DemlerEun-Ah KimNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-7 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Cole Miles Annabelle Bohrdt Ruihan Wu Christie Chiu Muqing Xu Geoffrey Ji Markus Greiner Kilian Q. Weinberger Eugene Demler Eun-Ah Kim Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data |
description |
Physical principles underlying machine learning analysis of quantum gas microscopy data are not well understood. Here the authors develop a neural network based approach to classify image data in terms of multi-site correlation functions and reveal the role of fourth-order correlations in the Fermi-Hubbard model. |
format |
article |
author |
Cole Miles Annabelle Bohrdt Ruihan Wu Christie Chiu Muqing Xu Geoffrey Ji Markus Greiner Kilian Q. Weinberger Eugene Demler Eun-Ah Kim |
author_facet |
Cole Miles Annabelle Bohrdt Ruihan Wu Christie Chiu Muqing Xu Geoffrey Ji Markus Greiner Kilian Q. Weinberger Eugene Demler Eun-Ah Kim |
author_sort |
Cole Miles |
title |
Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data |
title_short |
Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data |
title_full |
Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data |
title_fullStr |
Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data |
title_full_unstemmed |
Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data |
title_sort |
correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/c5f988f964a14deb9630bb1251319555 |
work_keys_str_mv |
AT colemiles correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata AT annabellebohrdt correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata AT ruihanwu correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata AT christiechiu correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata AT muqingxu correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata AT geoffreyji correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata AT markusgreiner correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata AT kilianqweinberger correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata AT eugenedemler correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata AT eunahkim correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata |
_version_ |
1718381404625043456 |