Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data

Physical principles underlying machine learning analysis of quantum gas microscopy data are not well understood. Here the authors develop a neural network based approach to classify image data in terms of multi-site correlation functions and reveal the role of fourth-order correlations in the Fermi-...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cole Miles, Annabelle Bohrdt, Ruihan Wu, Christie Chiu, Muqing Xu, Geoffrey Ji, Markus Greiner, Kilian Q. Weinberger, Eugene Demler, Eun-Ah Kim
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/c5f988f964a14deb9630bb1251319555
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c5f988f964a14deb9630bb1251319555
record_format dspace
spelling oai:doaj.org-article:c5f988f964a14deb9630bb12513195552021-12-02T17:12:24ZCorrelator convolutional neural networks as an interpretable architecture for image-like quantum matter data10.1038/s41467-021-23952-w2041-1723https://doaj.org/article/c5f988f964a14deb9630bb12513195552021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23952-whttps://doaj.org/toc/2041-1723Physical principles underlying machine learning analysis of quantum gas microscopy data are not well understood. Here the authors develop a neural network based approach to classify image data in terms of multi-site correlation functions and reveal the role of fourth-order correlations in the Fermi-Hubbard model.Cole MilesAnnabelle BohrdtRuihan WuChristie ChiuMuqing XuGeoffrey JiMarkus GreinerKilian Q. WeinbergerEugene DemlerEun-Ah KimNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-7 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Cole Miles
Annabelle Bohrdt
Ruihan Wu
Christie Chiu
Muqing Xu
Geoffrey Ji
Markus Greiner
Kilian Q. Weinberger
Eugene Demler
Eun-Ah Kim
Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
description Physical principles underlying machine learning analysis of quantum gas microscopy data are not well understood. Here the authors develop a neural network based approach to classify image data in terms of multi-site correlation functions and reveal the role of fourth-order correlations in the Fermi-Hubbard model.
format article
author Cole Miles
Annabelle Bohrdt
Ruihan Wu
Christie Chiu
Muqing Xu
Geoffrey Ji
Markus Greiner
Kilian Q. Weinberger
Eugene Demler
Eun-Ah Kim
author_facet Cole Miles
Annabelle Bohrdt
Ruihan Wu
Christie Chiu
Muqing Xu
Geoffrey Ji
Markus Greiner
Kilian Q. Weinberger
Eugene Demler
Eun-Ah Kim
author_sort Cole Miles
title Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
title_short Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
title_full Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
title_fullStr Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
title_full_unstemmed Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
title_sort correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c5f988f964a14deb9630bb1251319555
work_keys_str_mv AT colemiles correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata
AT annabellebohrdt correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata
AT ruihanwu correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata
AT christiechiu correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata
AT muqingxu correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata
AT geoffreyji correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata
AT markusgreiner correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata
AT kilianqweinberger correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata
AT eugenedemler correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata
AT eunahkim correlatorconvolutionalneuralnetworksasaninterpretablearchitectureforimagelikequantummatterdata
_version_ 1718381404625043456