Correlator convolutional neural networks as an interpretable architecture for image-like quantum matter data
Physical principles underlying machine learning analysis of quantum gas microscopy data are not well understood. Here the authors develop a neural network based approach to classify image data in terms of multi-site correlation functions and reveal the role of fourth-order correlations in the Fermi-...
Guardado en:
Autores principales: | Cole Miles, Annabelle Bohrdt, Ruihan Wu, Christie Chiu, Muqing Xu, Geoffrey Ji, Markus Greiner, Kilian Q. Weinberger, Eugene Demler, Eun-Ah Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c5f988f964a14deb9630bb1251319555 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Coupling a Mobile Hole to an Antiferromagnetic Spin Background: Transient Dynamics of a Magnetic Polaron
por: Geoffrey Ji, et al.
Publicado: (2021) -
Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture
por: Sergio Saponara, et al.
Publicado: (2021) -
Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition
por: Yuto Ashida, et al.
Publicado: (2020) -
Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline
por: Ziqi Tang, et al.
Publicado: (2019) -
Interpretable Diagnosis for Whole-Slide Melanoma Histology Images Using Convolutional Neural Network
por: Peizhen Xie, et al.
Publicado: (2021)