Spike triggered hormone secretion in vasopressin cells; a model investigation of mechanism and heterogeneous population function.
Vasopressin neurons generate distinctive phasic patterned spike activity in response to elevated extracellular osmotic pressure. These spikes are generated in the cell body and are conducted down the axon to the axonal terminals where they trigger Ca²⁺ entry and subsequent exocytosis of hormone-cont...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c6029b66602d4b3f846810ebcb902642 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c6029b66602d4b3f846810ebcb902642 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c6029b66602d4b3f846810ebcb9026422021-11-18T05:53:40ZSpike triggered hormone secretion in vasopressin cells; a model investigation of mechanism and heterogeneous population function.1553-734X1553-735810.1371/journal.pcbi.1003187https://doaj.org/article/c6029b66602d4b3f846810ebcb9026422013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23966850/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Vasopressin neurons generate distinctive phasic patterned spike activity in response to elevated extracellular osmotic pressure. These spikes are generated in the cell body and are conducted down the axon to the axonal terminals where they trigger Ca²⁺ entry and subsequent exocytosis of hormone-containing vesicles and secretion of vasopressin. This mechanism is highly non-linear, subject to both frequency facilitation and fatigue, such that the rate of secretion depends on both the rate and patterning of the spike activity. Here we used computational modelling to investigate this relationship and how it shapes the overall response of the neuronal population. We generated a concise single compartment model of the secretion mechanism, fitted to experimentally observed profiles of facilitation and fatigue, and based on representations of the hypothesised underlying mechanisms. These mechanisms include spike broadening, Ca²⁺ channel inactivation, a Ca²⁺ sensitive K⁺ current, and releasable and reserve pools of vesicles. We coupled the secretion model to an existing integrate-and-fire based spiking model in order to study the secretion response to increasing synaptic input, and compared phasic and non-phasic spiking models to assess the functional value of the phasic spiking pattern. The secretory response of individual phasic cells is very non-linear, but the response of a heterogeneous population of phasic cells shows a much more linear response to increasing input, matching the linear response we observe experimentally, though in this respect, phasic cells have no apparent advantage over non-phasic cells. Another challenge for the cells is maintaining this linear response during chronic stimulation, and we show that the activity-dependent fatigue mechanism has a potentially useful function in helping to maintain secretion despite depletion of stores. Without this mechanism, secretion in response to a steady stimulus declines as the stored content declines.Duncan J MacGregorGareth LengPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 9, Iss 8, p e1003187 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Duncan J MacGregor Gareth Leng Spike triggered hormone secretion in vasopressin cells; a model investigation of mechanism and heterogeneous population function. |
description |
Vasopressin neurons generate distinctive phasic patterned spike activity in response to elevated extracellular osmotic pressure. These spikes are generated in the cell body and are conducted down the axon to the axonal terminals where they trigger Ca²⁺ entry and subsequent exocytosis of hormone-containing vesicles and secretion of vasopressin. This mechanism is highly non-linear, subject to both frequency facilitation and fatigue, such that the rate of secretion depends on both the rate and patterning of the spike activity. Here we used computational modelling to investigate this relationship and how it shapes the overall response of the neuronal population. We generated a concise single compartment model of the secretion mechanism, fitted to experimentally observed profiles of facilitation and fatigue, and based on representations of the hypothesised underlying mechanisms. These mechanisms include spike broadening, Ca²⁺ channel inactivation, a Ca²⁺ sensitive K⁺ current, and releasable and reserve pools of vesicles. We coupled the secretion model to an existing integrate-and-fire based spiking model in order to study the secretion response to increasing synaptic input, and compared phasic and non-phasic spiking models to assess the functional value of the phasic spiking pattern. The secretory response of individual phasic cells is very non-linear, but the response of a heterogeneous population of phasic cells shows a much more linear response to increasing input, matching the linear response we observe experimentally, though in this respect, phasic cells have no apparent advantage over non-phasic cells. Another challenge for the cells is maintaining this linear response during chronic stimulation, and we show that the activity-dependent fatigue mechanism has a potentially useful function in helping to maintain secretion despite depletion of stores. Without this mechanism, secretion in response to a steady stimulus declines as the stored content declines. |
format |
article |
author |
Duncan J MacGregor Gareth Leng |
author_facet |
Duncan J MacGregor Gareth Leng |
author_sort |
Duncan J MacGregor |
title |
Spike triggered hormone secretion in vasopressin cells; a model investigation of mechanism and heterogeneous population function. |
title_short |
Spike triggered hormone secretion in vasopressin cells; a model investigation of mechanism and heterogeneous population function. |
title_full |
Spike triggered hormone secretion in vasopressin cells; a model investigation of mechanism and heterogeneous population function. |
title_fullStr |
Spike triggered hormone secretion in vasopressin cells; a model investigation of mechanism and heterogeneous population function. |
title_full_unstemmed |
Spike triggered hormone secretion in vasopressin cells; a model investigation of mechanism and heterogeneous population function. |
title_sort |
spike triggered hormone secretion in vasopressin cells; a model investigation of mechanism and heterogeneous population function. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/c6029b66602d4b3f846810ebcb902642 |
work_keys_str_mv |
AT duncanjmacgregor spiketriggeredhormonesecretioninvasopressincellsamodelinvestigationofmechanismandheterogeneouspopulationfunction AT garethleng spiketriggeredhormonesecretioninvasopressincellsamodelinvestigationofmechanismandheterogeneouspopulationfunction |
_version_ |
1718424692980711424 |