A Novel Feature Extraction Method for Soft Faults in Nonlinear Analog Circuits Based on LMD-GFD and KPCA
To obtain feature information of soft faults in non-linear analog circuits in a more effective way, this paper proposed a novel feature extraction method for soft faults in non-linear analog circuits based on Local Mean Decomposition-Generalized Fractal Dimension (LMD-GFD) and Kernel Principal Compo...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c6061fe296b94018ac1ff1306c4a71ea |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | To obtain feature information of soft faults in non-linear analog circuits in a more effective way, this paper proposed a novel feature extraction method for soft faults in non-linear analog circuits based on Local Mean Decomposition-Generalized Fractal Dimension (LMD-GFD) and Kernel Principal Component Analysis (KPCA). First, the fault signals were subject to LMD, the features of each component signal were extracted by GFD for the first time, and a high-dimensional feature space was formed. Then, KPCA was employed to reduce the dimensionality of the high-dimensional feature space, and feature extraction was performed again; at last, KPCA and Support Vector Machine (SVM) were adopted to diagnose the faults. The experimental results showed that the proposed LMD-GFD-KPCA method had effectively extracted the features of the soft faults in the non-linear analog circuits, and it achieved a high diagnosis rate. |
---|