Automated extraction of chemical synthesis actions from experimental procedures

Extracting experimental operations for chemical synthesis from procedures reported in prose is a tedious task. Here the authors develop a deep-learning model based on the transformer architecture to translate experimental procedures from the field of organic chemistry into synthesis actions.

Guardado en:
Detalles Bibliográficos
Autores principales: Alain C. Vaucher, Federico Zipoli, Joppe Geluykens, Vishnu H. Nair, Philippe Schwaller, Teodoro Laino
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/c608946fef074490b3844156d983475b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c608946fef074490b3844156d983475b
record_format dspace
spelling oai:doaj.org-article:c608946fef074490b3844156d983475b2021-12-02T18:37:05ZAutomated extraction of chemical synthesis actions from experimental procedures10.1038/s41467-020-17266-62041-1723https://doaj.org/article/c608946fef074490b3844156d983475b2020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17266-6https://doaj.org/toc/2041-1723Extracting experimental operations for chemical synthesis from procedures reported in prose is a tedious task. Here the authors develop a deep-learning model based on the transformer architecture to translate experimental procedures from the field of organic chemistry into synthesis actions.Alain C. VaucherFederico ZipoliJoppe GeluykensVishnu H. NairPhilippe SchwallerTeodoro LainoNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Alain C. Vaucher
Federico Zipoli
Joppe Geluykens
Vishnu H. Nair
Philippe Schwaller
Teodoro Laino
Automated extraction of chemical synthesis actions from experimental procedures
description Extracting experimental operations for chemical synthesis from procedures reported in prose is a tedious task. Here the authors develop a deep-learning model based on the transformer architecture to translate experimental procedures from the field of organic chemistry into synthesis actions.
format article
author Alain C. Vaucher
Federico Zipoli
Joppe Geluykens
Vishnu H. Nair
Philippe Schwaller
Teodoro Laino
author_facet Alain C. Vaucher
Federico Zipoli
Joppe Geluykens
Vishnu H. Nair
Philippe Schwaller
Teodoro Laino
author_sort Alain C. Vaucher
title Automated extraction of chemical synthesis actions from experimental procedures
title_short Automated extraction of chemical synthesis actions from experimental procedures
title_full Automated extraction of chemical synthesis actions from experimental procedures
title_fullStr Automated extraction of chemical synthesis actions from experimental procedures
title_full_unstemmed Automated extraction of chemical synthesis actions from experimental procedures
title_sort automated extraction of chemical synthesis actions from experimental procedures
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/c608946fef074490b3844156d983475b
work_keys_str_mv AT alaincvaucher automatedextractionofchemicalsynthesisactionsfromexperimentalprocedures
AT federicozipoli automatedextractionofchemicalsynthesisactionsfromexperimentalprocedures
AT joppegeluykens automatedextractionofchemicalsynthesisactionsfromexperimentalprocedures
AT vishnuhnair automatedextractionofchemicalsynthesisactionsfromexperimentalprocedures
AT philippeschwaller automatedextractionofchemicalsynthesisactionsfromexperimentalprocedures
AT teodorolaino automatedextractionofchemicalsynthesisactionsfromexperimentalprocedures
_version_ 1718377886966087680