Automated extraction of chemical synthesis actions from experimental procedures
Extracting experimental operations for chemical synthesis from procedures reported in prose is a tedious task. Here the authors develop a deep-learning model based on the transformer architecture to translate experimental procedures from the field of organic chemistry into synthesis actions.
Guardado en:
Autores principales: | Alain C. Vaucher, Federico Zipoli, Joppe Geluykens, Vishnu H. Nair, Philippe Schwaller, Teodoro Laino |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c608946fef074490b3844156d983475b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Inferring experimental procedures from text-based representations of chemical reactions
por: Alain C. Vaucher, et al.
Publicado: (2021) -
Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
por: Giorgio Pesciullesi, et al.
Publicado: (2020) -
Applications of Deep Eutectic Solvents Related to Health, Synthesis, and Extraction of Natural Based Chemicals
por: Laura Lomba, et al.
Publicado: (2021) -
Centrifugally automated Solid-Phase Extraction of DNA by immiscible liquid valving and chemically powered centripetal pumping of peripherally stored reagents
por: David J. Kinahan, et al.
Publicado: (2021) -
A NEW PROCEDURE FOR THE CHEMICAL CONNECTIVITY INDEX APPLICATION
por: CORNWELL,EDWARD
Publicado: (2004)