An Online Network Intrusion Detection Model Based on Improved Regularized Extreme Learning Machine
Extreme learning machine (ELM) is a novel single-hidden layer feedforward neural network to obtain fast learning speed by randomly initializing weights and deviations. Due to its extremely fast learning speed, it has been widely used in training of massive data in recent years. In order to adapt to...
Enregistré dans:
Auteurs principaux: | Yanqiang Tang, Chenghai Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c609ef3cb6e14ed38b13afbbd18d4aee |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Non-intrusive load identification based on CF-MF-SE joint feature
par: Guoqing AN, et autres
Publié: (2021) -
Comparative Performance Evaluation of Intrusion Detection Based on Machine Learning in In-Vehicle Controller Area Network Bus
par: Tarek Moulahi, et autres
Publié: (2021) -
Research Trends in Network-Based Intrusion Detection Systems: A Review
par: Satish Kumar, et autres
Publié: (2021) -
Application of Empirical Mode Decomposition and Extreme Learning Machine Algorithms on Prediction of the Surface Vibration Signal
par: Yan Shen, et autres
Publié: (2021) -
An Anomaly-Based Intrusion Detection System for Internet of Medical Things Networks
par: Georgios Zachos, et autres
Publié: (2021)