Effect of the Acid-Etching on Grit-Blasted Dental Implants to Improve Osseointegration: Histomorphometric Analysis of the Bone-Implant Contact in the Rabbit Tibia Model

Previous studies have shown that the most reliable way to evaluate the success of an implant is by bone-to-implant contact (BIC). Recent techniques allow modifications to the implant surface that improve mechanical and biological characteristics, and also upgrade osseointegration. Objective: The aim...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Blanca Ríos-Carrasco, Bernardo Ferreira Lemos, Mariano Herrero-Climent, F. Javier Gil Mur, Jose Vicente Ríos-Santos
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/c6105227f782449c9241cbf6a63fd0a6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c6105227f782449c9241cbf6a63fd0a6
record_format dspace
spelling oai:doaj.org-article:c6105227f782449c9241cbf6a63fd0a62021-11-25T17:17:06ZEffect of the Acid-Etching on Grit-Blasted Dental Implants to Improve Osseointegration: Histomorphometric Analysis of the Bone-Implant Contact in the Rabbit Tibia Model10.3390/coatings111114262079-6412https://doaj.org/article/c6105227f782449c9241cbf6a63fd0a62021-11-01T00:00:00Zhttps://www.mdpi.com/2079-6412/11/11/1426https://doaj.org/toc/2079-6412Previous studies have shown that the most reliable way to evaluate the success of an implant is by bone-to-implant contact (BIC). Recent techniques allow modifications to the implant surface that improve mechanical and biological characteristics, and also upgrade osseointegration. Objective: The aim was to evaluate the osseointegration in rabbit tibia of two different titanium dental implant surfaces: shot-blasted with Al<sub>2</sub>O<sub>3</sub> (SB) and the same treatment with an acid-etching by immersion for 15 s in HCl/H<sub>2</sub>SO<sub>4</sub> (SB + AE). Material and methods: Roughness parameters (R<sub>a</sub>, R<sub>t</sub>, and R<sub>z</sub>) were determined by white light interferometer microscopy. Surface wettability was evaluated with a contact angle video-based system using water, di-iodomethane, and formamide. Surface free energy was determined by means of Owens and Wendt equations. Scanning electron microscopy equipped with X-ray microanalysis was used to study the morphology and determine the chemical composition of the surfaces. Twenty-four grade 4 titanium dental implants (Essential Klockner<sup>®</sup>) were implanted in the rabbit’s tibia, 12 for each surface treatment, using six rabbits. Six weeks later the rabbits were sacrificed and the implants were sent for histologic analysis. Resonance frequency analysis (RFA) was recorded both at the time of surgery and the end of the research with each device (Osstell Mentor and Osstell ISQ). Results: The roughness measurements between the two treatments did not show statistically significant differences. However, the effect of the acid etching made the surface slightly more hydrophilic (decreasing contact angle from 74.7 for SB to 64.3 for SB + AE) and it presented a higher surface energy. The bone-to-implant contact ratio (BIC %) showed a similar tendency, with 55.18 ± 15.67 and 59.9 ± 13.15 for SB and SB + AE implants, respectively. After 6 weeks of healing, the SB + AE showed an implant stability quotient (ISQ) value of 76 ± 4.47 and the shot-blasted one an ISQ value of 75.83 ± 8.44 (no statistically significant difference). Implants with different surface properties had distinctive forms of behavior regarding osseointegration. Furthermore, the Osstell system was an invasive and reliable method to measure implant stability. Conclusion: Both surfaces of implants studied showed high osseointegration. The SB and SB + AE implants used in our study had similar behavior both in terms of BIC values and RFA. The RFA systems in Osstell Mentor and Osstell ISQ confirmed nearly perfect reproducibility and repeatability.Blanca Ríos-CarrascoBernardo Ferreira LemosMariano Herrero-ClimentF. Javier Gil MurJose Vicente Ríos-SantosMDPI AGarticletitanium surfacesurface roughnesshistomorphometric analysisanimal studiesresonance frequency analysisimplant stabilityEngineering (General). Civil engineering (General)TA1-2040ENCoatings, Vol 11, Iss 1426, p 1426 (2021)
institution DOAJ
collection DOAJ
language EN
topic titanium surface
surface roughness
histomorphometric analysis
animal studies
resonance frequency analysis
implant stability
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle titanium surface
surface roughness
histomorphometric analysis
animal studies
resonance frequency analysis
implant stability
Engineering (General). Civil engineering (General)
TA1-2040
Blanca Ríos-Carrasco
Bernardo Ferreira Lemos
Mariano Herrero-Climent
F. Javier Gil Mur
Jose Vicente Ríos-Santos
Effect of the Acid-Etching on Grit-Blasted Dental Implants to Improve Osseointegration: Histomorphometric Analysis of the Bone-Implant Contact in the Rabbit Tibia Model
description Previous studies have shown that the most reliable way to evaluate the success of an implant is by bone-to-implant contact (BIC). Recent techniques allow modifications to the implant surface that improve mechanical and biological characteristics, and also upgrade osseointegration. Objective: The aim was to evaluate the osseointegration in rabbit tibia of two different titanium dental implant surfaces: shot-blasted with Al<sub>2</sub>O<sub>3</sub> (SB) and the same treatment with an acid-etching by immersion for 15 s in HCl/H<sub>2</sub>SO<sub>4</sub> (SB + AE). Material and methods: Roughness parameters (R<sub>a</sub>, R<sub>t</sub>, and R<sub>z</sub>) were determined by white light interferometer microscopy. Surface wettability was evaluated with a contact angle video-based system using water, di-iodomethane, and formamide. Surface free energy was determined by means of Owens and Wendt equations. Scanning electron microscopy equipped with X-ray microanalysis was used to study the morphology and determine the chemical composition of the surfaces. Twenty-four grade 4 titanium dental implants (Essential Klockner<sup>®</sup>) were implanted in the rabbit’s tibia, 12 for each surface treatment, using six rabbits. Six weeks later the rabbits were sacrificed and the implants were sent for histologic analysis. Resonance frequency analysis (RFA) was recorded both at the time of surgery and the end of the research with each device (Osstell Mentor and Osstell ISQ). Results: The roughness measurements between the two treatments did not show statistically significant differences. However, the effect of the acid etching made the surface slightly more hydrophilic (decreasing contact angle from 74.7 for SB to 64.3 for SB + AE) and it presented a higher surface energy. The bone-to-implant contact ratio (BIC %) showed a similar tendency, with 55.18 ± 15.67 and 59.9 ± 13.15 for SB and SB + AE implants, respectively. After 6 weeks of healing, the SB + AE showed an implant stability quotient (ISQ) value of 76 ± 4.47 and the shot-blasted one an ISQ value of 75.83 ± 8.44 (no statistically significant difference). Implants with different surface properties had distinctive forms of behavior regarding osseointegration. Furthermore, the Osstell system was an invasive and reliable method to measure implant stability. Conclusion: Both surfaces of implants studied showed high osseointegration. The SB and SB + AE implants used in our study had similar behavior both in terms of BIC values and RFA. The RFA systems in Osstell Mentor and Osstell ISQ confirmed nearly perfect reproducibility and repeatability.
format article
author Blanca Ríos-Carrasco
Bernardo Ferreira Lemos
Mariano Herrero-Climent
F. Javier Gil Mur
Jose Vicente Ríos-Santos
author_facet Blanca Ríos-Carrasco
Bernardo Ferreira Lemos
Mariano Herrero-Climent
F. Javier Gil Mur
Jose Vicente Ríos-Santos
author_sort Blanca Ríos-Carrasco
title Effect of the Acid-Etching on Grit-Blasted Dental Implants to Improve Osseointegration: Histomorphometric Analysis of the Bone-Implant Contact in the Rabbit Tibia Model
title_short Effect of the Acid-Etching on Grit-Blasted Dental Implants to Improve Osseointegration: Histomorphometric Analysis of the Bone-Implant Contact in the Rabbit Tibia Model
title_full Effect of the Acid-Etching on Grit-Blasted Dental Implants to Improve Osseointegration: Histomorphometric Analysis of the Bone-Implant Contact in the Rabbit Tibia Model
title_fullStr Effect of the Acid-Etching on Grit-Blasted Dental Implants to Improve Osseointegration: Histomorphometric Analysis of the Bone-Implant Contact in the Rabbit Tibia Model
title_full_unstemmed Effect of the Acid-Etching on Grit-Blasted Dental Implants to Improve Osseointegration: Histomorphometric Analysis of the Bone-Implant Contact in the Rabbit Tibia Model
title_sort effect of the acid-etching on grit-blasted dental implants to improve osseointegration: histomorphometric analysis of the bone-implant contact in the rabbit tibia model
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/c6105227f782449c9241cbf6a63fd0a6
work_keys_str_mv AT blancarioscarrasco effectoftheacidetchingongritblasteddentalimplantstoimproveosseointegrationhistomorphometricanalysisoftheboneimplantcontactintherabbittibiamodel
AT bernardoferreiralemos effectoftheacidetchingongritblasteddentalimplantstoimproveosseointegrationhistomorphometricanalysisoftheboneimplantcontactintherabbittibiamodel
AT marianoherrerocliment effectoftheacidetchingongritblasteddentalimplantstoimproveosseointegrationhistomorphometricanalysisoftheboneimplantcontactintherabbittibiamodel
AT fjaviergilmur effectoftheacidetchingongritblasteddentalimplantstoimproveosseointegrationhistomorphometricanalysisoftheboneimplantcontactintherabbittibiamodel
AT josevicenteriossantos effectoftheacidetchingongritblasteddentalimplantstoimproveosseointegrationhistomorphometricanalysisoftheboneimplantcontactintherabbittibiamodel
_version_ 1718412557076660224