Robust optimization of convolutional neural networks with a uniform experiment design method: a case of phonocardiogram testing in patients with heart diseases
Abstract Background Heart sound measurement is crucial for analyzing and diagnosing patients with heart diseases. This study employed phonocardiogram signals as the input signal for heart disease analysis due to the accessibility of the respective method. This study referenced preprocessing techniqu...
Guardado en:
Autores principales: | Wen-Hsien Ho, Tian-Hsiang Huang, Po-Yuan Yang, Jyh-Horng Chou, Jin-Yi Qu, Po-Chih Chang, Fu-I. Chou, Jinn-Tsong Tsai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c619fe36f26449518864407d71102bcc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Classifying chest CT images as COVID-19 positive/negative using a convolutional neural network ensemble model and uniform experimental design method
por: Yao-Mei Chen, et al.
Publicado: (2021) -
Artificial intelligence classification model for macular degeneration images: a robust optimization framework for residual neural networks
por: Wen-Hsien Ho, et al.
Publicado: (2021) -
Classification of age-related macular degeneration using convolutional-neural-network-based transfer learning
por: Yao-Mei Chen, et al.
Publicado: (2021) -
Comparison of wavelet transformations to enhance convolutional neural network performance in brain tumor segmentation
por: Mohamadreza Hajiabadi, et al.
Publicado: (2021) -
An Approach for Thoracic Syndrome Classification with Convolutional Neural Networks
por: Sapna Juneja, et al.
Publicado: (2021)