Integrating ensemble systems biology feature selection and bimodal deep neural network for breast cancer prognosis prediction
Abstract Breast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematica...
Guardado en:
Autores principales: | Li-Hsin Cheng, Te-Cheng Hsu, Che Lin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c621b24dda584dbca72cb509d4970b73 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Convolutional Neural Network Ensembles Using ECOC
por: Sara Atito Ali Ahmed, et al.
Publicado: (2021) -
Proton-enabled activation of peptide materials for biological bimodal memory
por: Min-Kyu Song, et al.
Publicado: (2020) -
Prediction of functional outcomes of schizophrenia with genetic biomarkers using a bagging ensemble machine learning method with feature selection
por: Eugene Lin, et al.
Publicado: (2021) -
Ensemble learning for the early prediction of neonatal jaundice with genetic features
por: Haowen Deng, et al.
Publicado: (2021) -
Unraveling Dissipation-Related Features in Magnetic Imaging by Bimodal Magnetic Force Microscopy
por: Miriam Jaafar, et al.
Publicado: (2021)