Existence of multiple nontrivial solutions of the nonlinear Schrödinger-Korteweg-de Vries type system

In this paper we are concerned with the existence, nonexistence and bifurcation of nontrivial solution of the nonlinear Schrödinger-Korteweg-de Vries type system(NLS-NLS-KdV). First, we find some conditions to guarantee the existence and nonexistence of positive solution of the system. Second, we st...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Geng Qiuping, Wang Jun, Yang Jing
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/c62e05eada434179b49816ff77005d4a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper we are concerned with the existence, nonexistence and bifurcation of nontrivial solution of the nonlinear Schrödinger-Korteweg-de Vries type system(NLS-NLS-KdV). First, we find some conditions to guarantee the existence and nonexistence of positive solution of the system. Second, we study the asymptotic behavior of the positive ground state solution. Finally, we use the classical Crandall-Rabinowitz local bifurcation theory to get the nontrivial positive solution. To get these results we encounter some new challenges. By combining the Nehari manifolds constraint method and the delicate energy estimates, we overcome the difficulties and find the two bifurcation branches from one semitrivial solution. This is an new interesting phenomenon but which have not previously been found.