TSMG: A Deep Learning Framework for Recognizing Human Learning Style Using EEG Signals
Educational theory claims that integrating learning style into learning-related activities can improve academic performance. Traditional methods to recognize learning styles are mostly based on questionnaires and online behavior analyses. These methods are highly subjective and inaccurate in terms o...
Guardado en:
Autores principales: | Bingxue Zhang, Yang Shi, Longfeng Hou, Zhong Yin, Chengliang Chai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c62f2e11381748f7bd7adf59346ec2a8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neural Decoding of EEG Signals with Machine Learning: A Systematic Review
por: Maham Saeidi, et al.
Publicado: (2021) -
Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review
por: Jing Cai, et al.
Publicado: (2021) -
DSTnet: Deformable Spatio-Temporal Convolutional Residual Network for Video Super-Resolution
por: Anusha Khan, et al.
Publicado: (2021) -
Classification of EEG Signals using Fast Fourier Transform (FFT) and Adaptive Neuro Fuzzy Inference System (ANFIS)
por: Suwanto Suwanto, et al.
Publicado: (2019) -
INVESTIGATING SECONDARY SCHOOL STUDENTS’ LEARNING STYLES ACCORDING TO DEMOGRAPHIC VARIABLES
por: Özden TEZEL
Publicado: (2019)