TSMG: A Deep Learning Framework for Recognizing Human Learning Style Using EEG Signals
Educational theory claims that integrating learning style into learning-related activities can improve academic performance. Traditional methods to recognize learning styles are mostly based on questionnaires and online behavior analyses. These methods are highly subjective and inaccurate in terms o...
Enregistré dans:
Auteurs principaux: | Bingxue Zhang, Yang Shi, Longfeng Hou, Zhong Yin, Chengliang Chai |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c62f2e11381748f7bd7adf59346ec2a8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Neural Decoding of EEG Signals with Machine Learning: A Systematic Review
par: Maham Saeidi, et autres
Publié: (2021) -
Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review
par: Jing Cai, et autres
Publié: (2021) -
DSTnet: Deformable Spatio-Temporal Convolutional Residual Network for Video Super-Resolution
par: Anusha Khan, et autres
Publié: (2021) -
Classification of EEG Signals using Fast Fourier Transform (FFT) and Adaptive Neuro Fuzzy Inference System (ANFIS)
par: Suwanto Suwanto, et autres
Publié: (2019) -
INVESTIGATING SECONDARY SCHOOL STUDENTS’ LEARNING STYLES ACCORDING TO DEMOGRAPHIC VARIABLES
par: Özden TEZEL
Publié: (2019)