Deep Spatial-Spectral Subspace Clustering for Hyperspectral Images Based on Contrastive Learning
Hyperspectral image (HSI) clustering is a major challenge due to the redundant spectral information in HSIs. In this paper, we propose a novel deep subspace clustering method that extracts spatial–spectral features via contrastive learning. First, we construct positive and negative sample pairs thro...
Guardado en:
Autores principales: | Xiang Hu, Teng Li, Tong Zhou, Yuanxi Peng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c6301634536045f89cc5770378d53257 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
por: Tianyu Zhang, et al.
Publicado: (2021) -
Hyperspectral Image Classification via a Novel Spectral–Spatial 3D ConvLSTM-CNN
por: Ghulam Farooque, et al.
Publicado: (2021) -
Spectral Clustering Effect in Software Development Effort Estimation
por: Petr Silhavy, et al.
Publicado: (2021) -
Predicting the Photosynthetic Rate of Chinese Brassica Using Deep Learning Methods
por: Peng Gao, et al.
Publicado: (2021)