Involvement Of Vascular Aldosterone Synthase In Phosphate-Induced Osteogenic Transformation Of Vascular Smooth Muscle Cells

Abstract Vascular calcification resulting from hyperphosphatemia is a major determinant of mortality in chronic kidney disease (CKD). Vascular calcification is driven by aldosterone-sensitive osteogenic transformation of vascular smooth muscle cells (VSMCs). We show that even in absence of exogenous...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ioana Alesutan, Jakob Voelkl, Martina Feger, Denise V. Kratschmar, Tatsiana Castor, Sobuj Mia, Michael Sacherer, Robert Viereck, Oliver Borst, Christina Leibrock, Meinrad Gawaz, Makoto Kuro-o, Stefan Pilz, Andreas Tomaschitz, Alex Odermatt, Burkert Pieske, Carsten A. Wagner, Florian Lang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c635e27a35b04458b69aff88f7a050b4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Vascular calcification resulting from hyperphosphatemia is a major determinant of mortality in chronic kidney disease (CKD). Vascular calcification is driven by aldosterone-sensitive osteogenic transformation of vascular smooth muscle cells (VSMCs). We show that even in absence of exogenous aldosterone, silencing and pharmacological inhibition (spironolactone, eplerenone) of the mineralocorticoid receptor (MR) ameliorated phosphate-induced osteo-/chondrogenic transformation of primary human aortic smooth muscle cells (HAoSMCs). High phosphate concentrations up-regulated aldosterone synthase (CYP11B2) expression in HAoSMCs. Silencing and deficiency of CYP11B2 in VSMCs ameliorated phosphate-induced osteogenic reprogramming and calcification. Phosphate treatment was followed by nuclear export of APEX1, a CYP11B2 transcriptional repressor. APEX1 silencing up-regulated CYP11B2 expression and stimulated osteo-/chondrogenic transformation. APEX1 overexpression blunted the phosphate-induced osteo-/chondrogenic transformation and calcification of HAoSMCs. Cyp11b2 expression was higher in aortic tissue of hyperphosphatemic klotho-hypomorphic (kl/kl) mice than in wild-type mice. In adrenalectomized kl/kl mice, spironolactone treatment still significantly ameliorated aortic osteoinductive reprogramming. Our findings suggest that VSMCs express aldosterone synthase, which is up-regulated by phosphate-induced disruption of APEX1-dependent gene suppression. Vascular CYP11B2 may contribute to stimulation of VSMCs osteo-/chondrogenic transformation during hyperphosphatemia.