Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks
Scalp electroencephalogram (EEG) is a non-invasive measure of brain activity. It is widely used in several applications including cognitive tasks, sleep stage detection, and seizure prediction. When recorded over several hours, this signal is usually corrupted by noisy disturbances such as experimen...
Guardado en:
Autores principales: | Fabio Lopes, Adriana Leal, Julio Medeiros, Mauro F. Pinto, Antonio Dourado, Matthias Dumpelmann, Cesar Teixeira |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c66a76a4430f41249d8757fdbf5d62da |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Toolbox and Crowdsourcing Platform for Automatic Labeling of Independent Components in Electroencephalography
por: Gurgen Soghoyan, et al.
Publicado: (2021) -
Automatic identification of charcoal origin based on deep learning
por: Rodrigues de Oliveira Neto,Ricardo, et al.
Publicado: (2021) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Jing-Shan Huang, et al.
Publicado: (2021) -
A Lightweight CNN Architecture for Automatic Modulation Classification
por: Zhongyong Wang, et al.
Publicado: (2021) -
A STUDY ON COMPARATIVE YIELDS OF STANDARD SHORT TERM ELECTROENCEPHALOGRAM AND LONG TERM ELECTROENCEPHALOGRAM RECORDING IN SUSPECTED EPILEPSY PATIENTS
por: Saima Shafait, et al.
Publicado: (2021)