A hierarchical anti-Hebbian network model for the formation of spatial cells in three-dimensional space
Neurons in the hippocampal formation encode diverse spatial properties. Here, the authors present a hierarchical network model for 3D spatial navigation that accounts for the observed neuronal representations and predict as yet unreported cell types with planar selectivity.
Enregistré dans:
| Auteurs principaux: | Karthik Soman, Srinivasa Chakravarthy, Michael M. Yartsev |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2018
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/c678e90068d34a75a177cca184272581 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Mapping Hebbian Learning Rules to Coupling Resistances for Oscillatory Neural Networks
par: Corentin Delacour, et autres
Publié: (2021) -
The influence of vision on tactile Hebbian learning
par: Esther Kuehn, et autres
Publié: (2017) -
Astrocytes gate Hebbian synaptic plasticity in the striatum
par: Silvana Valtcheva, et autres
Publié: (2016) -
Non-Hebbian learning implementation in light-controlled resistive memory devices.
par: Mariana Ungureanu, et autres
Publié: (2012) -
Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity.
par: Yotam Luz, et autres
Publié: (2012)