A hierarchical anti-Hebbian network model for the formation of spatial cells in three-dimensional space
Neurons in the hippocampal formation encode diverse spatial properties. Here, the authors present a hierarchical network model for 3D spatial navigation that accounts for the observed neuronal representations and predict as yet unreported cell types with planar selectivity.
Guardado en:
Autores principales: | Karthik Soman, Srinivasa Chakravarthy, Michael M. Yartsev |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c678e90068d34a75a177cca184272581 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mapping Hebbian Learning Rules to Coupling Resistances for Oscillatory Neural Networks
por: Corentin Delacour, et al.
Publicado: (2021) -
The influence of vision on tactile Hebbian learning
por: Esther Kuehn, et al.
Publicado: (2017) -
Astrocytes gate Hebbian synaptic plasticity in the striatum
por: Silvana Valtcheva, et al.
Publicado: (2016) -
Non-Hebbian learning implementation in light-controlled resistive memory devices.
por: Mariana Ungureanu, et al.
Publicado: (2012) -
Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity.
por: Yotam Luz, et al.
Publicado: (2012)