Explainability for experts: A design framework for making algorithms supporting expert decisions more explainable
Algorithmic decision support systems are widely applied in domains ranging from healthcare to journalism. To ensure that these systems are fair and accountable, it is essential that humans can maintain meaningful agency, understand and oversee algorithmic processes. Explainability is often seen as a...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c67e658e63724db0bf46090d18fc599c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c67e658e63724db0bf46090d18fc599c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c67e658e63724db0bf46090d18fc599c2021-11-30T04:17:49ZExplainability for experts: A design framework for making algorithms supporting expert decisions more explainable2666-659610.1016/j.jrt.2021.100017https://doaj.org/article/c67e658e63724db0bf46090d18fc599c2021-10-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S266665962100010Xhttps://doaj.org/toc/2666-6596Algorithmic decision support systems are widely applied in domains ranging from healthcare to journalism. To ensure that these systems are fair and accountable, it is essential that humans can maintain meaningful agency, understand and oversee algorithmic processes. Explainability is often seen as a promising mechanism for enabling human-in-the-loop, however, current approaches are ineffective and can lead to various biases. We argue that explainability should be tailored to support naturalistic decision-making and sensemaking strategies employed by domain experts and novices. Based on cognitive psychology and human factors literature review we map potential decision-making strategies dependant on expertise, risk and time dynamics and propose the conceptual Expertise, Risk and Time Explainability framework, intended to be used as explainability design guidelines. Finally, we present a worked example in journalism to illustrate the applicability of our framework in practice.Auste SimkuteEwa LugerBronwyn JonesMichael EvansRhianne JonesElsevierarticleExplainabilityDecision support systemsJournalismHuman-in-the-loopExpertiseInformation technologyT58.5-58.64ENJournal of Responsible Technology, Vol 7, Iss , Pp 100017- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Explainability Decision support systems Journalism Human-in-the-loop Expertise Information technology T58.5-58.64 |
spellingShingle |
Explainability Decision support systems Journalism Human-in-the-loop Expertise Information technology T58.5-58.64 Auste Simkute Ewa Luger Bronwyn Jones Michael Evans Rhianne Jones Explainability for experts: A design framework for making algorithms supporting expert decisions more explainable |
description |
Algorithmic decision support systems are widely applied in domains ranging from healthcare to journalism. To ensure that these systems are fair and accountable, it is essential that humans can maintain meaningful agency, understand and oversee algorithmic processes. Explainability is often seen as a promising mechanism for enabling human-in-the-loop, however, current approaches are ineffective and can lead to various biases. We argue that explainability should be tailored to support naturalistic decision-making and sensemaking strategies employed by domain experts and novices. Based on cognitive psychology and human factors literature review we map potential decision-making strategies dependant on expertise, risk and time dynamics and propose the conceptual Expertise, Risk and Time Explainability framework, intended to be used as explainability design guidelines. Finally, we present a worked example in journalism to illustrate the applicability of our framework in practice. |
format |
article |
author |
Auste Simkute Ewa Luger Bronwyn Jones Michael Evans Rhianne Jones |
author_facet |
Auste Simkute Ewa Luger Bronwyn Jones Michael Evans Rhianne Jones |
author_sort |
Auste Simkute |
title |
Explainability for experts: A design framework for making algorithms supporting expert decisions more explainable |
title_short |
Explainability for experts: A design framework for making algorithms supporting expert decisions more explainable |
title_full |
Explainability for experts: A design framework for making algorithms supporting expert decisions more explainable |
title_fullStr |
Explainability for experts: A design framework for making algorithms supporting expert decisions more explainable |
title_full_unstemmed |
Explainability for experts: A design framework for making algorithms supporting expert decisions more explainable |
title_sort |
explainability for experts: a design framework for making algorithms supporting expert decisions more explainable |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/c67e658e63724db0bf46090d18fc599c |
work_keys_str_mv |
AT austesimkute explainabilityforexpertsadesignframeworkformakingalgorithmssupportingexpertdecisionsmoreexplainable AT ewaluger explainabilityforexpertsadesignframeworkformakingalgorithmssupportingexpertdecisionsmoreexplainable AT bronwynjones explainabilityforexpertsadesignframeworkformakingalgorithmssupportingexpertdecisionsmoreexplainable AT michaelevans explainabilityforexpertsadesignframeworkformakingalgorithmssupportingexpertdecisionsmoreexplainable AT rhiannejones explainabilityforexpertsadesignframeworkformakingalgorithmssupportingexpertdecisionsmoreexplainable |
_version_ |
1718406772612399104 |