Explainability for experts: A design framework for making algorithms supporting expert decisions more explainable
Algorithmic decision support systems are widely applied in domains ranging from healthcare to journalism. To ensure that these systems are fair and accountable, it is essential that humans can maintain meaningful agency, understand and oversee algorithmic processes. Explainability is often seen as a...
Guardado en:
Autores principales: | Auste Simkute, Ewa Luger, Bronwyn Jones, Michael Evans, Rhianne Jones |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c67e658e63724db0bf46090d18fc599c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
por: V. Golovachyova, et al.
Publicado: (2020)
por: V. Golovachyova, et al.
Publicado: (2020)
Ejemplares similares
-
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
por: V. Golovachyova, et al.
Publicado: (2020) -
Turning the blackbox into a glassbox: An explainable machine learning approach for understanding hospitality customer
por: Ritu Sharma, et al.
Publicado: (2021) -
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
por: V. Golovachyova, et al.
Publicado: (2020) -
Pattern Recognition of Human Face With Photos Using KNN Algorithm
por: Dedy Kurniadi, et al.
Publicado: (2021) -
Optimization and improvement of fake news detection using deep learning approaches for societal benefit
por: Tavishee Chauhan, M.E, et al.
Publicado: (2021)