FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks.
Mathematical models of biochemical networks can largely facilitate the comprehension of the mechanisms at the basis of cellular processes, as well as the formulation of hypotheses that can be tested by means of targeted laboratory experiments. However, two issues might hamper the achievement of frui...
Guardado en:
Autores principales: | Andrea Tangherloni, Marco S Nobile, Paolo Cazzaniga, Giulia Capitoli, Simone Spolaor, Leonardo Rundo, Giancarlo Mauri, Daniela Besozzi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c68e42988e454d1fb93c38388c684beb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
cuTauLeaping: a GPU-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems.
por: Marco S Nobile, et al.
Publicado: (2014) -
Learning fine-grained estimation of physiological states from coarse-grained labels by distribution restoration
por: Zengyi Qin, et al.
Publicado: (2020) -
Exploiting Serialized Fine-Grained Action Recognition Using WiFi Sensing
por: Weiyuan Tong, et al.
Publicado: (2021) -
Machine learning coarse grained models for water
por: Henry Chan, et al.
Publicado: (2019) -
Backmapping triangulated surfaces to coarse-grained membrane models
por: Weria Pezeshkian, et al.
Publicado: (2020)