PSMA-Targeting Reduction-Cleavable Hyperbranched Polyamide-Amine Gene Delivery System to Treat the Bone Metastases of Prostate Cancer

Yongheng Ye1 ,* Lingli Zhang2 ,* Yuhu Dai,1 Zhi Wang,3 Cuie Li,3 Yue Peng,4 Dong Ma,2 Peiheng He1 1Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangzhou, Guangdong Province...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ye Y, Zhang L, Dai Y, Wang Z, Li C, Peng Y, Ma D, He P
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/c69229183df047e09f38a9c77d6cc1e3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c69229183df047e09f38a9c77d6cc1e3
record_format dspace
spelling oai:doaj.org-article:c69229183df047e09f38a9c77d6cc1e32021-12-02T11:17:24ZPSMA-Targeting Reduction-Cleavable Hyperbranched Polyamide-Amine Gene Delivery System to Treat the Bone Metastases of Prostate Cancer1178-2013https://doaj.org/article/c69229183df047e09f38a9c77d6cc1e32020-09-01T00:00:00Zhttps://www.dovepress.com/psma-targeting-reduction-cleavable-hyperbranched-polyamide-amine-gene--peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Yongheng Ye1 ,* Lingli Zhang2 ,* Yuhu Dai,1 Zhi Wang,3 Cuie Li,3 Yue Peng,4 Dong Ma,2 Peiheng He1 1Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangzhou, Guangdong Province 510080, People’s Republic of China; 2Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, People’s Republic of China; 3Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong Province 510530, People’s Republic of China; 4Department of Otorhinolaryngology Head and Neck Surgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong Province 519000, People’s Republic of China*These authors contributed equally to this workCorrespondence: Peiheng HeDepartment of Orthopedic Surgery, Guangdong Prov Key Laboratory Orthopaed & Traumatol, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, People’s Republic of ChinaEmail hepeiheng@mail.sysu.edu.cnDong MaKey Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, People’s Republic of ChinaEmail tmadong@jnu.edu.cnObjective: This study aimed to develop aptamer-anchored hyperbranched poly(amido amine) (HPAA) for the systemic delivery of miRNA-133a-3p and to evaluate its therapeutic potential against bone metastasis of prostate cancer in vivo and in vitro.Methods: A glutathione (GSH)-responsive cationic HPAA was prepared by the Michael addition reaction. Furthermore, HPAA-PEG was produced by PEGylation, and then the aptamer targeted to prostate-specific membrane antigen (PSMA) was conjugated to the HPAA-PEG. The obtained HPAA-PEG-APT could form nanocomplexes with miRNA-133a-3p through electrostatic adsorption.Results: The results of immunocytochemistry indicated that the complexes could target PSMA-expressing LNCaP cells. The ability of HPAA-PEG-APT to facilitate the delivery of miRNA-133a-3p into LNCaP cells was proven, and HPAA-PEG-APT/miRNA-133a-3p demonstrated enhanced antitumor activity, lower cytotoxicity and better biocompatibility in vitro. Moreover, in a mouse tibial injection tumor model, the intravenous injection of the HPAA-PEG-APT/miRNA-133a-3p complex significantly inhibited cancer growth and extended the survival time.Conclusion: This study provided an aptamer-anchored HPAA-loaded gene system to deliver miRNA-133a-3p for better therapeutic efficacy of bone metastasis of prostate cancer.Keywords: miRNA, aptamer, hyperbranched polyamide amine, bone metastasis, prostate cancerYe YZhang LDai YWang ZLi CPeng YMa DHe PDove Medical Pressarticlemirnaaptamerhyperbranched polyamide aminebone metastasisprostate cancerMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 15, Pp 7173-7184 (2020)
institution DOAJ
collection DOAJ
language EN
topic mirna
aptamer
hyperbranched polyamide amine
bone metastasis
prostate cancer
Medicine (General)
R5-920
spellingShingle mirna
aptamer
hyperbranched polyamide amine
bone metastasis
prostate cancer
Medicine (General)
R5-920
Ye Y
Zhang L
Dai Y
Wang Z
Li C
Peng Y
Ma D
He P
PSMA-Targeting Reduction-Cleavable Hyperbranched Polyamide-Amine Gene Delivery System to Treat the Bone Metastases of Prostate Cancer
description Yongheng Ye1 ,* Lingli Zhang2 ,* Yuhu Dai,1 Zhi Wang,3 Cuie Li,3 Yue Peng,4 Dong Ma,2 Peiheng He1 1Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangzhou, Guangdong Province 510080, People’s Republic of China; 2Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, People’s Republic of China; 3Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong Province 510530, People’s Republic of China; 4Department of Otorhinolaryngology Head and Neck Surgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong Province 519000, People’s Republic of China*These authors contributed equally to this workCorrespondence: Peiheng HeDepartment of Orthopedic Surgery, Guangdong Prov Key Laboratory Orthopaed & Traumatol, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, People’s Republic of ChinaEmail hepeiheng@mail.sysu.edu.cnDong MaKey Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, People’s Republic of ChinaEmail tmadong@jnu.edu.cnObjective: This study aimed to develop aptamer-anchored hyperbranched poly(amido amine) (HPAA) for the systemic delivery of miRNA-133a-3p and to evaluate its therapeutic potential against bone metastasis of prostate cancer in vivo and in vitro.Methods: A glutathione (GSH)-responsive cationic HPAA was prepared by the Michael addition reaction. Furthermore, HPAA-PEG was produced by PEGylation, and then the aptamer targeted to prostate-specific membrane antigen (PSMA) was conjugated to the HPAA-PEG. The obtained HPAA-PEG-APT could form nanocomplexes with miRNA-133a-3p through electrostatic adsorption.Results: The results of immunocytochemistry indicated that the complexes could target PSMA-expressing LNCaP cells. The ability of HPAA-PEG-APT to facilitate the delivery of miRNA-133a-3p into LNCaP cells was proven, and HPAA-PEG-APT/miRNA-133a-3p demonstrated enhanced antitumor activity, lower cytotoxicity and better biocompatibility in vitro. Moreover, in a mouse tibial injection tumor model, the intravenous injection of the HPAA-PEG-APT/miRNA-133a-3p complex significantly inhibited cancer growth and extended the survival time.Conclusion: This study provided an aptamer-anchored HPAA-loaded gene system to deliver miRNA-133a-3p for better therapeutic efficacy of bone metastasis of prostate cancer.Keywords: miRNA, aptamer, hyperbranched polyamide amine, bone metastasis, prostate cancer
format article
author Ye Y
Zhang L
Dai Y
Wang Z
Li C
Peng Y
Ma D
He P
author_facet Ye Y
Zhang L
Dai Y
Wang Z
Li C
Peng Y
Ma D
He P
author_sort Ye Y
title PSMA-Targeting Reduction-Cleavable Hyperbranched Polyamide-Amine Gene Delivery System to Treat the Bone Metastases of Prostate Cancer
title_short PSMA-Targeting Reduction-Cleavable Hyperbranched Polyamide-Amine Gene Delivery System to Treat the Bone Metastases of Prostate Cancer
title_full PSMA-Targeting Reduction-Cleavable Hyperbranched Polyamide-Amine Gene Delivery System to Treat the Bone Metastases of Prostate Cancer
title_fullStr PSMA-Targeting Reduction-Cleavable Hyperbranched Polyamide-Amine Gene Delivery System to Treat the Bone Metastases of Prostate Cancer
title_full_unstemmed PSMA-Targeting Reduction-Cleavable Hyperbranched Polyamide-Amine Gene Delivery System to Treat the Bone Metastases of Prostate Cancer
title_sort psma-targeting reduction-cleavable hyperbranched polyamide-amine gene delivery system to treat the bone metastases of prostate cancer
publisher Dove Medical Press
publishDate 2020
url https://doaj.org/article/c69229183df047e09f38a9c77d6cc1e3
work_keys_str_mv AT yey psmatargetingreductioncleavablehyperbranchedpolyamideaminegenedeliverysystemtotreatthebonemetastasesofprostatecancer
AT zhangl psmatargetingreductioncleavablehyperbranchedpolyamideaminegenedeliverysystemtotreatthebonemetastasesofprostatecancer
AT daiy psmatargetingreductioncleavablehyperbranchedpolyamideaminegenedeliverysystemtotreatthebonemetastasesofprostatecancer
AT wangz psmatargetingreductioncleavablehyperbranchedpolyamideaminegenedeliverysystemtotreatthebonemetastasesofprostatecancer
AT lic psmatargetingreductioncleavablehyperbranchedpolyamideaminegenedeliverysystemtotreatthebonemetastasesofprostatecancer
AT pengy psmatargetingreductioncleavablehyperbranchedpolyamideaminegenedeliverysystemtotreatthebonemetastasesofprostatecancer
AT mad psmatargetingreductioncleavablehyperbranchedpolyamideaminegenedeliverysystemtotreatthebonemetastasesofprostatecancer
AT hep psmatargetingreductioncleavablehyperbranchedpolyamideaminegenedeliverysystemtotreatthebonemetastasesofprostatecancer
_version_ 1718396073859350528