Image classification of human carcinoma cells using complex wavelet-based covariance descriptors.
Cancer cell lines are widely used for research purposes in laboratories all over the world. Computer-assisted classification of cancer cells can alleviate the burden of manual labeling and help cancer research. In this paper, we present a novel computerized method for cancer cell line image classifi...
Guardado en:
Autores principales: | Furkan Keskin, Alexander Suhre, Kivanc Kose, Tulin Ersahin, A Enis Cetin, Rengul Cetin-Atalay |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c697cb1560cb4c549b36454835c89f65 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Modified HSIFT Descriptor for Medical Image Classification of Anatomy Objects
por: Sumeer Ahmad Khan, et al.
Publicado: (2021) -
Smart markers for watershed-based cell segmentation.
por: Can Fahrettin Koyuncu, et al.
Publicado: (2012) -
Bayesian learning of chemisorption for bridging the complexity of electronic descriptors
por: Siwen Wang, et al.
Publicado: (2020) -
Development of a novel zebrafish xenograft model in ache mutants using liver cancer cell lines
por: M. Ender Avci, et al.
Publicado: (2018) -
Combining Low-dimensional Wavelet Features and Support Vector Machine for Arrhythmia Beat Classification
por: Qin Qin, et al.
Publicado: (2017)