Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC <italic toggle="yes">In Vivo</italic>

ABSTRACT Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jörg Schumacher, Volker Behrends, Zhensheng Pan, Dan R. Brown, Franziska Heydenreich, Matthew R. Lewis, Mark H. Bennett, Banafsheh Razzaghi, Michal Komorowski, Mauricio Barahona, Michael P. H. Stumpf, Sivaramesh Wigneshweraraj, Jacob G. Bundy, Martin Buck
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2013
Materias:
Acceso en línea:https://doaj.org/article/c6ca6230e20b4eb9b6fba345e8f705e3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c6ca6230e20b4eb9b6fba345e8f705e3
record_format dspace
spelling oai:doaj.org-article:c6ca6230e20b4eb9b6fba345e8f705e32021-11-15T15:42:32ZNitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC <italic toggle="yes">In Vivo</italic>10.1128/mBio.00881-132150-7511https://doaj.org/article/c6ca6230e20b4eb9b6fba345e8f705e32013-12-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00881-13https://doaj.org/toc/2150-7511ABSTRACT Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the intracellular glutamine concentration is not limiting but 5.6-fold higher than in ammonium-replete conditions; in addition, α-ketoglutarate concentrations are elevated. We address this glutamine paradox from a systems perspective. We show that the dominant role of NtrC is to regulate glnA transcription and its own expression, indicating that the glutamine paradox is not due to NtrC-independent gene regulation. The absolute intracellular NtrC and GS concentrations reveal molecular control parameters, where NtrC-specific activities were highest in nitrogen-starved cells, while under glutamine growth, NtrC showed intermediate specific activity. We propose an in vivo model in which α-ketoglutarate can derepress nitrogen regulation despite nitrogen sufficiency. IMPORTANCE Nitrogen is the most important nutrient for cell growth after carbon, and its metabolism is coordinated at the metabolic, transcriptional, and protein levels. We show that growth on glutamine as a sole nitrogen source, commonly assumed to be nitrogen limiting and used as such as a model system for nitrogen limitation, is in fact nitrogen replete. Our integrative quantitative analysis of key molecules involved in nitrogen assimilation and regulation reveal that glutamine is not necessarily the dominant molecule signaling nitrogen sufficiency and that α-ketoglutarate may play a more important role in signaling nitrogen status. NtrB/NtrC integrates α-ketoglutarate and glutamine signaling—sensed by the UTase (glnD) and PII (glnB), respectively—and regulates the nitrogen response through self-regulated expression and phosphorylation-dependent activation of the nitrogen (ntr) regulon. Our findings support α-ketoglutarate acting as a global regulatory metabolite.Jörg SchumacherVolker BehrendsZhensheng PanDan R. BrownFranziska HeydenreichMatthew R. LewisMark H. BennettBanafsheh RazzaghiMichal KomorowskiMauricio BarahonaMichael P. H. StumpfSivaramesh WigneshwerarajJacob G. BundyMartin BuckAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 4, Iss 6 (2013)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Jörg Schumacher
Volker Behrends
Zhensheng Pan
Dan R. Brown
Franziska Heydenreich
Matthew R. Lewis
Mark H. Bennett
Banafsheh Razzaghi
Michal Komorowski
Mauricio Barahona
Michael P. H. Stumpf
Sivaramesh Wigneshweraraj
Jacob G. Bundy
Martin Buck
Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC <italic toggle="yes">In Vivo</italic>
description ABSTRACT Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the intracellular glutamine concentration is not limiting but 5.6-fold higher than in ammonium-replete conditions; in addition, α-ketoglutarate concentrations are elevated. We address this glutamine paradox from a systems perspective. We show that the dominant role of NtrC is to regulate glnA transcription and its own expression, indicating that the glutamine paradox is not due to NtrC-independent gene regulation. The absolute intracellular NtrC and GS concentrations reveal molecular control parameters, where NtrC-specific activities were highest in nitrogen-starved cells, while under glutamine growth, NtrC showed intermediate specific activity. We propose an in vivo model in which α-ketoglutarate can derepress nitrogen regulation despite nitrogen sufficiency. IMPORTANCE Nitrogen is the most important nutrient for cell growth after carbon, and its metabolism is coordinated at the metabolic, transcriptional, and protein levels. We show that growth on glutamine as a sole nitrogen source, commonly assumed to be nitrogen limiting and used as such as a model system for nitrogen limitation, is in fact nitrogen replete. Our integrative quantitative analysis of key molecules involved in nitrogen assimilation and regulation reveal that glutamine is not necessarily the dominant molecule signaling nitrogen sufficiency and that α-ketoglutarate may play a more important role in signaling nitrogen status. NtrB/NtrC integrates α-ketoglutarate and glutamine signaling—sensed by the UTase (glnD) and PII (glnB), respectively—and regulates the nitrogen response through self-regulated expression and phosphorylation-dependent activation of the nitrogen (ntr) regulon. Our findings support α-ketoglutarate acting as a global regulatory metabolite.
format article
author Jörg Schumacher
Volker Behrends
Zhensheng Pan
Dan R. Brown
Franziska Heydenreich
Matthew R. Lewis
Mark H. Bennett
Banafsheh Razzaghi
Michal Komorowski
Mauricio Barahona
Michael P. H. Stumpf
Sivaramesh Wigneshweraraj
Jacob G. Bundy
Martin Buck
author_facet Jörg Schumacher
Volker Behrends
Zhensheng Pan
Dan R. Brown
Franziska Heydenreich
Matthew R. Lewis
Mark H. Bennett
Banafsheh Razzaghi
Michal Komorowski
Mauricio Barahona
Michael P. H. Stumpf
Sivaramesh Wigneshweraraj
Jacob G. Bundy
Martin Buck
author_sort Jörg Schumacher
title Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC <italic toggle="yes">In Vivo</italic>
title_short Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC <italic toggle="yes">In Vivo</italic>
title_full Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC <italic toggle="yes">In Vivo</italic>
title_fullStr Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC <italic toggle="yes">In Vivo</italic>
title_full_unstemmed Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC <italic toggle="yes">In Vivo</italic>
title_sort nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator ntrc <italic toggle="yes">in vivo</italic>
publisher American Society for Microbiology
publishDate 2013
url https://doaj.org/article/c6ca6230e20b4eb9b6fba345e8f705e3
work_keys_str_mv AT jorgschumacher nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT volkerbehrends nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT zhenshengpan nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT danrbrown nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT franziskaheydenreich nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT matthewrlewis nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT markhbennett nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT banafshehrazzaghi nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT michalkomorowski nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT mauriciobarahona nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT michaelphstumpf nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT sivarameshwigneshweraraj nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT jacobgbundy nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
AT martinbuck nitrogenandcarbonstatusareintegratedatthetranscriptionallevelbythenitrogenregulatorntrcitalictoggleyesinvivoitalic
_version_ 1718427611136262144