A multi-objective genetic algorithm to find active modules in multiplex biological networks.

The identification of subnetworks of interest-or active modules-by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elva María Novoa-Del-Toro, Efrén Mezura-Montes, Matthieu Vignes, Morgane Térézol, Frédérique Magdinier, Laurent Tichit, Anaïs Baudot
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/c6d3a18612264ec793ee179ae807abcd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c6d3a18612264ec793ee179ae807abcd
record_format dspace
spelling oai:doaj.org-article:c6d3a18612264ec793ee179ae807abcd2021-12-02T19:58:00ZA multi-objective genetic algorithm to find active modules in multiplex biological networks.1553-734X1553-735810.1371/journal.pcbi.1009263https://doaj.org/article/c6d3a18612264ec793ee179ae807abcd2021-08-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009263https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358The identification of subnetworks of interest-or active modules-by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimizes both the density of interactions and the scores of the nodes (e.g., their differential expression). We compare MOGAMUN with state-of-the-art methods, representative of different algorithms dedicated to the identification of active modules in single networks. MOGAMUN identifies dense and high-scoring modules that are also easier to interpret. In addition, to our knowledge, MOGAMUN is the first method able to use multiplex networks. Multiplex networks are composed of different layers of physical and functional relationships between genes and proteins. Each layer is associated to its own meaning, topology, and biases; the multiplex framework allows exploiting this diversity of biological networks. We applied MOGAMUN to identify cellular processes perturbed in Facio-Scapulo-Humeral muscular Dystrophy, by integrating RNA-seq expression data with a multiplex biological network. We identified different active modules of interest, thereby providing new angles for investigating the pathomechanisms of this disease. Availability: MOGAMUN is available at https://github.com/elvanov/MOGAMUN and as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/MOGAMUN.html. Contact: anais.baudot@univ-amu.fr.Elva María Novoa-Del-ToroEfrén Mezura-MontesMatthieu VignesMorgane TérézolFrédérique MagdinierLaurent TichitAnaïs BaudotPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 8, p e1009263 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Elva María Novoa-Del-Toro
Efrén Mezura-Montes
Matthieu Vignes
Morgane Térézol
Frédérique Magdinier
Laurent Tichit
Anaïs Baudot
A multi-objective genetic algorithm to find active modules in multiplex biological networks.
description The identification of subnetworks of interest-or active modules-by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimizes both the density of interactions and the scores of the nodes (e.g., their differential expression). We compare MOGAMUN with state-of-the-art methods, representative of different algorithms dedicated to the identification of active modules in single networks. MOGAMUN identifies dense and high-scoring modules that are also easier to interpret. In addition, to our knowledge, MOGAMUN is the first method able to use multiplex networks. Multiplex networks are composed of different layers of physical and functional relationships between genes and proteins. Each layer is associated to its own meaning, topology, and biases; the multiplex framework allows exploiting this diversity of biological networks. We applied MOGAMUN to identify cellular processes perturbed in Facio-Scapulo-Humeral muscular Dystrophy, by integrating RNA-seq expression data with a multiplex biological network. We identified different active modules of interest, thereby providing new angles for investigating the pathomechanisms of this disease. Availability: MOGAMUN is available at https://github.com/elvanov/MOGAMUN and as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/MOGAMUN.html. Contact: anais.baudot@univ-amu.fr.
format article
author Elva María Novoa-Del-Toro
Efrén Mezura-Montes
Matthieu Vignes
Morgane Térézol
Frédérique Magdinier
Laurent Tichit
Anaïs Baudot
author_facet Elva María Novoa-Del-Toro
Efrén Mezura-Montes
Matthieu Vignes
Morgane Térézol
Frédérique Magdinier
Laurent Tichit
Anaïs Baudot
author_sort Elva María Novoa-Del-Toro
title A multi-objective genetic algorithm to find active modules in multiplex biological networks.
title_short A multi-objective genetic algorithm to find active modules in multiplex biological networks.
title_full A multi-objective genetic algorithm to find active modules in multiplex biological networks.
title_fullStr A multi-objective genetic algorithm to find active modules in multiplex biological networks.
title_full_unstemmed A multi-objective genetic algorithm to find active modules in multiplex biological networks.
title_sort multi-objective genetic algorithm to find active modules in multiplex biological networks.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/c6d3a18612264ec793ee179ae807abcd
work_keys_str_mv AT elvamarianovoadeltoro amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT efrenmezuramontes amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT matthieuvignes amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT morganeterezol amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT frederiquemagdinier amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT laurenttichit amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT anaisbaudot amultiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT elvamarianovoadeltoro multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT efrenmezuramontes multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT matthieuvignes multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT morganeterezol multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT frederiquemagdinier multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT laurenttichit multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
AT anaisbaudot multiobjectivegeneticalgorithmtofindactivemodulesinmultiplexbiologicalnetworks
_version_ 1718375803121565696