A Dual-Band Dual-Polarized Antenna with Improved Isolation Characteristics for Polarimetric SAR Applications

A dual-band dual-polarized antenna with high isolation characteristics is proposed for polarimetric synthetic aperture radar (PolSAR) applications. The antenna consists of four dipole antennas and 2 × 2 patch antenna arrays operating at the P-band (450–730 MHz) and Ka-band (34–36 GHz), respectively....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daesung Park, Jaehoon Choi
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/c6da79446e9243a48a3e1380ea6fece0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A dual-band dual-polarized antenna with high isolation characteristics is proposed for polarimetric synthetic aperture radar (PolSAR) applications. The antenna consists of four dipole antennas and 2 × 2 patch antenna arrays operating at the P-band (450–730 MHz) and Ka-band (34–36 GHz), respectively. The dipole antennas and the patch antenna arrays need dual-linear polarization characteristics to acquire PolSAR data. Improvements in the isolation characteristics at the P-band are achieved by inserting a metamaterial absorber with a fractal geometry between the transmitting (Tx) and receiving (Rx) dipole antennas. Without the absorber, the simulated isolation characteristics between the Tx and Rx antennas are lower than 19.2 dB over the target band. On the other hand, with the absorbers, the simulated isolation characteristics are higher than 23.44 dB over the target band, and remarkable improvement is achieved around the resonance frequency of the absorber. The measured results are in good agreement with the simulated ones, showing that the proposed antenna can be a good candidate for PolSAR applications.