The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers
Abstract Cancer cells release small extracellular vesicles, exosomes, that have been shown to contribute to various aspects of cancer development and progression. Differential analysis of exosomal proteomes from cancerous and non-tumorigenic breast cell lines can provide valuable information related...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c6f66b9b1b3f4187a8538d48334d1408 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c6f66b9b1b3f4187a8538d48334d1408 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c6f66b9b1b3f4187a8538d48334d14082021-12-02T18:50:59ZThe proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers10.1038/s41598-020-70393-42045-2322https://doaj.org/article/c6f66b9b1b3f4187a8538d48334d14082020-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-70393-4https://doaj.org/toc/2045-2322Abstract Cancer cells release small extracellular vesicles, exosomes, that have been shown to contribute to various aspects of cancer development and progression. Differential analysis of exosomal proteomes from cancerous and non-tumorigenic breast cell lines can provide valuable information related to breast cancer progression and metastasis. Moreover, such a comparison can be explored to find potentially new protein biomarkers for early disease detection. In this study, exosomal proteomes of MDA-MB-231, a metastatic breast cancer cell line, and MCF-10A, a non-cancerous epithelial breast cell line, were identified by nano-liquid chromatography coupled to tandem mass spectrometry. We also tested three exosomes isolation methods (ExoQuick, Ultracentrifugation (UC), and Ultrafiltration–Ultracentrifugation) and detergents (n-dodecyl β-d-maltoside, Triton X-100, and Digitonin) for solubilization of exosomal proteins and enhanced detection by mass spectrometry. A total of 1,107 exosomal proteins were identified in both cell lines, 726 of which were unique to the MDA-MB-231 breast cancer cell line. Among them, 87 proteins were predicted to be relevant to breast cancer and 16 proteins to cancer metastasis. Three exosomal membrane/surface proteins, glucose transporter 1 (GLUT-1), glypican 1 (GPC-1), and disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), were identified as potential breast cancer biomarkers and validated with Western blotting and high-resolution flow cytometry. We demonstrated that exosomes are a rich source of breast cancer-related proteins and surface biomarkers that may be used for disease diagnosis and prognosis.Yousef RishaZoran MinicShahrokh M. GhobadlooMaxim V. BerezovskiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yousef Risha Zoran Minic Shahrokh M. Ghobadloo Maxim V. Berezovski The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers |
description |
Abstract Cancer cells release small extracellular vesicles, exosomes, that have been shown to contribute to various aspects of cancer development and progression. Differential analysis of exosomal proteomes from cancerous and non-tumorigenic breast cell lines can provide valuable information related to breast cancer progression and metastasis. Moreover, such a comparison can be explored to find potentially new protein biomarkers for early disease detection. In this study, exosomal proteomes of MDA-MB-231, a metastatic breast cancer cell line, and MCF-10A, a non-cancerous epithelial breast cell line, were identified by nano-liquid chromatography coupled to tandem mass spectrometry. We also tested three exosomes isolation methods (ExoQuick, Ultracentrifugation (UC), and Ultrafiltration–Ultracentrifugation) and detergents (n-dodecyl β-d-maltoside, Triton X-100, and Digitonin) for solubilization of exosomal proteins and enhanced detection by mass spectrometry. A total of 1,107 exosomal proteins were identified in both cell lines, 726 of which were unique to the MDA-MB-231 breast cancer cell line. Among them, 87 proteins were predicted to be relevant to breast cancer and 16 proteins to cancer metastasis. Three exosomal membrane/surface proteins, glucose transporter 1 (GLUT-1), glypican 1 (GPC-1), and disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), were identified as potential breast cancer biomarkers and validated with Western blotting and high-resolution flow cytometry. We demonstrated that exosomes are a rich source of breast cancer-related proteins and surface biomarkers that may be used for disease diagnosis and prognosis. |
format |
article |
author |
Yousef Risha Zoran Minic Shahrokh M. Ghobadloo Maxim V. Berezovski |
author_facet |
Yousef Risha Zoran Minic Shahrokh M. Ghobadloo Maxim V. Berezovski |
author_sort |
Yousef Risha |
title |
The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers |
title_short |
The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers |
title_full |
The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers |
title_fullStr |
The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers |
title_full_unstemmed |
The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers |
title_sort |
proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/c6f66b9b1b3f4187a8538d48334d1408 |
work_keys_str_mv |
AT yousefrisha theproteomicanalysisofbreastcelllineexosomesrevealsdiseasepatternsandpotentialbiomarkers AT zoranminic theproteomicanalysisofbreastcelllineexosomesrevealsdiseasepatternsandpotentialbiomarkers AT shahrokhmghobadloo theproteomicanalysisofbreastcelllineexosomesrevealsdiseasepatternsandpotentialbiomarkers AT maximvberezovski theproteomicanalysisofbreastcelllineexosomesrevealsdiseasepatternsandpotentialbiomarkers AT yousefrisha proteomicanalysisofbreastcelllineexosomesrevealsdiseasepatternsandpotentialbiomarkers AT zoranminic proteomicanalysisofbreastcelllineexosomesrevealsdiseasepatternsandpotentialbiomarkers AT shahrokhmghobadloo proteomicanalysisofbreastcelllineexosomesrevealsdiseasepatternsandpotentialbiomarkers AT maximvberezovski proteomicanalysisofbreastcelllineexosomesrevealsdiseasepatternsandpotentialbiomarkers |
_version_ |
1718377470917345280 |