High-Payload Nanosuspension of Centella asiatica Extract for Improved Skin Delivery with No Irritation

Eun A Kim, Jun Soo Park, Min Seop Kim, Min Young Jeong, Hyun Jin Park, Jun Hyuk Choi, Jae Hee Seo, Yong Seok Choi, Myung Joo Kang College of Pharmacy, Dankook University, Cheonan, Chungnam, 330-714, KoreaCorrespondence: Myung Joo KangCollege of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kim EA, Park JS, Kim MS, Jeong MY, Park HJ, Choi JH, Seo JH, Choi YS, Kang MJ
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2021
Materias:
Acceso en línea:https://doaj.org/article/c70a3884cc044d25bfcacef73d278ade
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c70a3884cc044d25bfcacef73d278ade
record_format dspace
spelling oai:doaj.org-article:c70a3884cc044d25bfcacef73d278ade2021-12-02T17:55:08ZHigh-Payload Nanosuspension of Centella asiatica Extract for Improved Skin Delivery with No Irritation1178-2013https://doaj.org/article/c70a3884cc044d25bfcacef73d278ade2021-11-01T00:00:00Zhttps://www.dovepress.com/high-payload-nanosuspension-of-centella-asiatica-extract-for-improved--peer-reviewed-fulltext-article-IJNhttps://doaj.org/toc/1178-2013Eun A Kim, Jun Soo Park, Min Seop Kim, Min Young Jeong, Hyun Jin Park, Jun Hyuk Choi, Jae Hee Seo, Yong Seok Choi, Myung Joo Kang College of Pharmacy, Dankook University, Cheonan, Chungnam, 330-714, KoreaCorrespondence: Myung Joo KangCollege of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 330-714, KoreaTel +82 41 550 1446Fax +82 41 550 7899. Email kangmj@dankook.ac.krBackground: The titrated extract of Centella asiatica (CA) has received much attention as a cosmeceutical ingredient owing to its anti-wrinkle effect. However, due to the low solubility and high molecular weight of pharmacologically active constituents, including asiatic acid (AA), madecassic acid (MA), and asiaticoside (AS), it is challenging to fabricate high-payload topical preparations of CA with satisfactory skin absorption profiles.Purpose: This study aimed to design a high-payload topical preparation of CA using nanocrystallization technique and to evaluate its skin absorption profile and local tolerability.Methods: High-payload nanocrystal suspensions (NSs) were prepared using lab-scale bead-milling technology, by adjusting the type and amount of suspending agent, CA content, type of vehicle, and milling speed. CA-loaded NSs were characterized in terms of morphology, particle size, crystallinity, and in vitro dissolution pattern. Skin absorption of CA nanocrystals was evaluated using a vertical Franz diffusion cell mounted with porcine skin. In vivo skin irritation following topical application of high-payload NS was assessed in normal rats.Results: The optimized NS system, composed of 10% (w/v) CA, 0.5% polyvinylpyrrolidone (PVP) K30 as steric stabilizer, and 89.5% of distilled water, was characterized as follows: spherical or elliptical in shape, 200 nm in size, with low crystallinity. The in vitro dissolution of AA or MA from NSs was markedly faster compared to raw material, under sink condition. Penetration of AA, MA, and AS in the porcine skin was markedly elevated using the high-payload NS formula, providing 5-, 4-, and 4.5-fold higher accumulation in skin layer, compared to that of the marketed cream formula (CA 1%, Madeca cream). Moreover, topical application of high-payload NS was tolerable, showing neither erythema nor oedema in normal rats.Conclusion: The novel NS system is expected to be a virtuous approach for offering a better skin absorption of CA, without using an excess quantity of solubilizers.Keywords: Centella asiatica, asiatic acid, madecassic acid, asiaticoside, nanocrystal suspension, bead-milling, dissolution, skin absorption, skin irritationKim EAPark JSKim MSJeong MYPark HJChoi JHSeo JHChoi YSKang MJDove Medical Pressarticlecentella asiaticaasiatic acidmadecassic acidasiaticosidenanocrystal suspensionbead-millingdissolutionskin absorptionskin irritationMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 16, Pp 7417-7432 (2021)
institution DOAJ
collection DOAJ
language EN
topic centella asiatica
asiatic acid
madecassic acid
asiaticoside
nanocrystal suspension
bead-milling
dissolution
skin absorption
skin irritation
Medicine (General)
R5-920
spellingShingle centella asiatica
asiatic acid
madecassic acid
asiaticoside
nanocrystal suspension
bead-milling
dissolution
skin absorption
skin irritation
Medicine (General)
R5-920
Kim EA
Park JS
Kim MS
Jeong MY
Park HJ
Choi JH
Seo JH
Choi YS
Kang MJ
High-Payload Nanosuspension of Centella asiatica Extract for Improved Skin Delivery with No Irritation
description Eun A Kim, Jun Soo Park, Min Seop Kim, Min Young Jeong, Hyun Jin Park, Jun Hyuk Choi, Jae Hee Seo, Yong Seok Choi, Myung Joo Kang College of Pharmacy, Dankook University, Cheonan, Chungnam, 330-714, KoreaCorrespondence: Myung Joo KangCollege of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 330-714, KoreaTel +82 41 550 1446Fax +82 41 550 7899. Email kangmj@dankook.ac.krBackground: The titrated extract of Centella asiatica (CA) has received much attention as a cosmeceutical ingredient owing to its anti-wrinkle effect. However, due to the low solubility and high molecular weight of pharmacologically active constituents, including asiatic acid (AA), madecassic acid (MA), and asiaticoside (AS), it is challenging to fabricate high-payload topical preparations of CA with satisfactory skin absorption profiles.Purpose: This study aimed to design a high-payload topical preparation of CA using nanocrystallization technique and to evaluate its skin absorption profile and local tolerability.Methods: High-payload nanocrystal suspensions (NSs) were prepared using lab-scale bead-milling technology, by adjusting the type and amount of suspending agent, CA content, type of vehicle, and milling speed. CA-loaded NSs were characterized in terms of morphology, particle size, crystallinity, and in vitro dissolution pattern. Skin absorption of CA nanocrystals was evaluated using a vertical Franz diffusion cell mounted with porcine skin. In vivo skin irritation following topical application of high-payload NS was assessed in normal rats.Results: The optimized NS system, composed of 10% (w/v) CA, 0.5% polyvinylpyrrolidone (PVP) K30 as steric stabilizer, and 89.5% of distilled water, was characterized as follows: spherical or elliptical in shape, 200 nm in size, with low crystallinity. The in vitro dissolution of AA or MA from NSs was markedly faster compared to raw material, under sink condition. Penetration of AA, MA, and AS in the porcine skin was markedly elevated using the high-payload NS formula, providing 5-, 4-, and 4.5-fold higher accumulation in skin layer, compared to that of the marketed cream formula (CA 1%, Madeca cream). Moreover, topical application of high-payload NS was tolerable, showing neither erythema nor oedema in normal rats.Conclusion: The novel NS system is expected to be a virtuous approach for offering a better skin absorption of CA, without using an excess quantity of solubilizers.Keywords: Centella asiatica, asiatic acid, madecassic acid, asiaticoside, nanocrystal suspension, bead-milling, dissolution, skin absorption, skin irritation
format article
author Kim EA
Park JS
Kim MS
Jeong MY
Park HJ
Choi JH
Seo JH
Choi YS
Kang MJ
author_facet Kim EA
Park JS
Kim MS
Jeong MY
Park HJ
Choi JH
Seo JH
Choi YS
Kang MJ
author_sort Kim EA
title High-Payload Nanosuspension of Centella asiatica Extract for Improved Skin Delivery with No Irritation
title_short High-Payload Nanosuspension of Centella asiatica Extract for Improved Skin Delivery with No Irritation
title_full High-Payload Nanosuspension of Centella asiatica Extract for Improved Skin Delivery with No Irritation
title_fullStr High-Payload Nanosuspension of Centella asiatica Extract for Improved Skin Delivery with No Irritation
title_full_unstemmed High-Payload Nanosuspension of Centella asiatica Extract for Improved Skin Delivery with No Irritation
title_sort high-payload nanosuspension of centella asiatica extract for improved skin delivery with no irritation
publisher Dove Medical Press
publishDate 2021
url https://doaj.org/article/c70a3884cc044d25bfcacef73d278ade
work_keys_str_mv AT kimea highpayloadnanosuspensionofcentellaasiaticaextractforimprovedskindeliverywithnoirritation
AT parkjs highpayloadnanosuspensionofcentellaasiaticaextractforimprovedskindeliverywithnoirritation
AT kimms highpayloadnanosuspensionofcentellaasiaticaextractforimprovedskindeliverywithnoirritation
AT jeongmy highpayloadnanosuspensionofcentellaasiaticaextractforimprovedskindeliverywithnoirritation
AT parkhj highpayloadnanosuspensionofcentellaasiaticaextractforimprovedskindeliverywithnoirritation
AT choijh highpayloadnanosuspensionofcentellaasiaticaextractforimprovedskindeliverywithnoirritation
AT seojh highpayloadnanosuspensionofcentellaasiaticaextractforimprovedskindeliverywithnoirritation
AT choiys highpayloadnanosuspensionofcentellaasiaticaextractforimprovedskindeliverywithnoirritation
AT kangmj highpayloadnanosuspensionofcentellaasiaticaextractforimprovedskindeliverywithnoirritation
_version_ 1718379133074931712