A new era of cancer treatment: carbon nanotubes as drug delivery tools

Seyed Yazdan Madani1, Naghmeh Naderi1, Oshani Dissanayake1, Aaron Tan1, Alexander M Seifalian1,21Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Sciences, University College London, UK; 2Royal Free Hampstead NHS Trust Hospital, London, UKAbstract: Cancer i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2011
Materias:
Acceso en línea:https://doaj.org/article/c71760e6925e41e2a8e81ae65dd31c62
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Seyed Yazdan Madani1, Naghmeh Naderi1, Oshani Dissanayake1, Aaron Tan1, Alexander M Seifalian1,21Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Sciences, University College London, UK; 2Royal Free Hampstead NHS Trust Hospital, London, UKAbstract: Cancer is a generic term that encompasses a group of diseases characterized by an uncontrolled proliferation of cells. There are over 200 different types of cancer, each of which gains its nomenclature according to the type of tissue the cell originates in. Many patients who succumb to cancer do not die as a result of the primary tumor, but because of the systemic effects of metastases on other regions away from the original site. One of the aims of cancer therapy is to prevent the metastatic process as early as possible. There are currently many therapies in clinical use, and recent advances in biotechnology lend credence to the potential of nanotechnology in the fight against cancer. Nanomaterials such as carbon nanotubes (CNTs), quantum dots, and dendrimers have unique properties that can be exploited for diagnostic purposes, thermal ablation, and drug delivery in cancer. CNTs are tubular materials with nanometer-sized diameters and axial symmetry, giving them unique properties that can be exploited in the diagnosis and treatment of cancer. In addition, CNTs have the potential to deliver drugs directly to targeted cells and tissues. Alongside the rapid advances in the development of nanotechnology-based materials, elucidating the toxicity of nanoparticles is also imperative. Hence, in this review, we seek to explore the biomedical applications of CNTs, with particular emphasis on their use as therapeutic platforms in oncology.Keywords: carbon nanotubes, cancer, photothermal therapy, drug delivery, cytotoxicity, near infrared