Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies

Bacteria commonly live in spatially structured biofilm assemblages, which are encased by an extracellular matrix. Metabolic activity of the cells inside biofilms causes gradients in local environmental conditions, which leads to the emergence of physiologically differentiated subpopulations. Informa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Francisco Díaz-Pascual, Martin Lempp, Kazuki Nosho, Hannah Jeckel, Jeanyoung K Jo, Konstantin Neuhaus, Raimo Hartmann, Eric Jelli, Mads Frederik Hansen, Alexa Price-Whelan, Lars EP Dietrich, Hannes Link, Knut Drescher
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c7189e6f7875449c8818c4fcab0a0457
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c7189e6f7875449c8818c4fcab0a0457
record_format dspace
spelling oai:doaj.org-article:c7189e6f7875449c8818c4fcab0a04572021-11-09T11:53:43ZSpatial alanine metabolism determines local growth dynamics of Escherichia coli colonies10.7554/eLife.707942050-084Xe70794https://doaj.org/article/c7189e6f7875449c8818c4fcab0a04572021-11-01T00:00:00Zhttps://elifesciences.org/articles/70794https://doaj.org/toc/2050-084XBacteria commonly live in spatially structured biofilm assemblages, which are encased by an extracellular matrix. Metabolic activity of the cells inside biofilms causes gradients in local environmental conditions, which leads to the emergence of physiologically differentiated subpopulations. Information about the properties and spatial arrangement of such metabolic subpopulations, as well as their interaction strength and interaction length scales are lacking, even for model systems like Escherichia coli colony biofilms grown on agar-solidified media. Here, we use an unbiased approach, based on temporal and spatial transcriptome and metabolome data acquired during E. coli colony biofilm growth, to study the spatial organization of metabolism. We discovered that alanine displays a unique pattern among amino acids and that alanine metabolism is spatially and temporally heterogeneous. At the anoxic base of the colony, where carbon and nitrogen sources are abundant, cells secrete alanine via the transporter AlaE. In contrast, cells utilize alanine as a carbon and nitrogen source in the oxic nutrient-deprived region at the colony mid-height, via the enzymes DadA and DadX. This spatially structured alanine cross-feeding influences cellular viability and growth in the cross-feeding-dependent region, which shapes the overall colony morphology. More generally, our results on this precisely controllable biofilm model system demonstrate a remarkable spatiotemporal complexity of metabolism in biofilms. A better characterization of the spatiotemporal metabolic heterogeneities and dependencies is essential for understanding the physiology, architecture, and function of biofilms.Francisco Díaz-PascualMartin LemppKazuki NoshoHannah JeckelJeanyoung K JoKonstantin NeuhausRaimo HartmannEric JelliMads Frederik HansenAlexa Price-WhelanLars EP DietrichHannes LinkKnut DreschereLife Sciences Publications Ltdarticlebiofilmscoloniesmetabolismcross-feedingphenotypic heterogeneityMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021)
institution DOAJ
collection DOAJ
language EN
topic biofilms
colonies
metabolism
cross-feeding
phenotypic heterogeneity
Medicine
R
Science
Q
Biology (General)
QH301-705.5
spellingShingle biofilms
colonies
metabolism
cross-feeding
phenotypic heterogeneity
Medicine
R
Science
Q
Biology (General)
QH301-705.5
Francisco Díaz-Pascual
Martin Lempp
Kazuki Nosho
Hannah Jeckel
Jeanyoung K Jo
Konstantin Neuhaus
Raimo Hartmann
Eric Jelli
Mads Frederik Hansen
Alexa Price-Whelan
Lars EP Dietrich
Hannes Link
Knut Drescher
Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies
description Bacteria commonly live in spatially structured biofilm assemblages, which are encased by an extracellular matrix. Metabolic activity of the cells inside biofilms causes gradients in local environmental conditions, which leads to the emergence of physiologically differentiated subpopulations. Information about the properties and spatial arrangement of such metabolic subpopulations, as well as their interaction strength and interaction length scales are lacking, even for model systems like Escherichia coli colony biofilms grown on agar-solidified media. Here, we use an unbiased approach, based on temporal and spatial transcriptome and metabolome data acquired during E. coli colony biofilm growth, to study the spatial organization of metabolism. We discovered that alanine displays a unique pattern among amino acids and that alanine metabolism is spatially and temporally heterogeneous. At the anoxic base of the colony, where carbon and nitrogen sources are abundant, cells secrete alanine via the transporter AlaE. In contrast, cells utilize alanine as a carbon and nitrogen source in the oxic nutrient-deprived region at the colony mid-height, via the enzymes DadA and DadX. This spatially structured alanine cross-feeding influences cellular viability and growth in the cross-feeding-dependent region, which shapes the overall colony morphology. More generally, our results on this precisely controllable biofilm model system demonstrate a remarkable spatiotemporal complexity of metabolism in biofilms. A better characterization of the spatiotemporal metabolic heterogeneities and dependencies is essential for understanding the physiology, architecture, and function of biofilms.
format article
author Francisco Díaz-Pascual
Martin Lempp
Kazuki Nosho
Hannah Jeckel
Jeanyoung K Jo
Konstantin Neuhaus
Raimo Hartmann
Eric Jelli
Mads Frederik Hansen
Alexa Price-Whelan
Lars EP Dietrich
Hannes Link
Knut Drescher
author_facet Francisco Díaz-Pascual
Martin Lempp
Kazuki Nosho
Hannah Jeckel
Jeanyoung K Jo
Konstantin Neuhaus
Raimo Hartmann
Eric Jelli
Mads Frederik Hansen
Alexa Price-Whelan
Lars EP Dietrich
Hannes Link
Knut Drescher
author_sort Francisco Díaz-Pascual
title Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies
title_short Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies
title_full Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies
title_fullStr Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies
title_full_unstemmed Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies
title_sort spatial alanine metabolism determines local growth dynamics of escherichia coli colonies
publisher eLife Sciences Publications Ltd
publishDate 2021
url https://doaj.org/article/c7189e6f7875449c8818c4fcab0a0457
work_keys_str_mv AT franciscodiazpascual spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT martinlempp spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT kazukinosho spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT hannahjeckel spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT jeanyoungkjo spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT konstantinneuhaus spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT raimohartmann spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT ericjelli spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT madsfrederikhansen spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT alexapricewhelan spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT larsepdietrich spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT hanneslink spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
AT knutdrescher spatialalaninemetabolismdetermineslocalgrowthdynamicsofescherichiacolicolonies
_version_ 1718441054508679168