Resting-state multi-spectrum functional connectivity networks for identification of MCI patients.
In this paper, a high-dimensional pattern classification framework, based on functional associations between brain regions during resting-state, is proposed to accurately identify MCI individuals from subjects who experience normal aging. The proposed technique employs multi-spectrum networks to cha...
Guardado en:
Autores principales: | Chong-Yaw Wee, Pew-Thian Yap, Kevin Denny, Jeffrey N Browndyke, Guy G Potter, Kathleen A Welsh-Bohmer, Lihong Wang, Dinggang Shen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c71e355816754705ba5aa27848594cac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers.
por: Daoqiang Zhang, et al.
Publicado: (2012) -
Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis
por: Yu Zhang, et al.
Publicado: (2017) -
Relationship between Short-Range and Homotopic Long-Range Resting State Functional Connectivity in Temporal Lobes in Autism Spectrum Disorder
por: Xiaoyin Wu, et al.
Publicado: (2021) -
Hierarchical interactions model for predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) conversion.
por: Han Li, et al.
Publicado: (2014) -
Altered Extended Locus Coeruleus and Ventral Tegmental Area Networks in Boys with Autism Spectrum Disorders: A Resting-State Functional Connectivity Study
por: Huang Y, et al.
Publicado: (2021)