Meta-Seg: A Generalized Meta-Learning Framework for Multi-Class Few-Shot Semantic Segmentation
Semantic segmentation performs pixel-wise classification for given images, which can be widely used in autonomous driving, robotics, medical diagnostics and etc. The recent advanced approaches have witnessed rapid progress in semantic segmentation. However, these supervised learning based methods re...
Enregistré dans:
Auteurs principaux: | Zhiying Cao, Tengfei Zhang, Wenhui Diao, Yue Zhang, Xiaode Lyu, Kun Fu, Xian Sun |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c733ea5763c84041ba4ff1446090b10c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Few-Shot Object Detection via Sample Processing
par: Honghui Xu, et autres
Publié: (2021) -
Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification
par: Pei Zhang, et autres
Publié: (2021) -
Automated Muzzle Detection and Biometric Identification via Few-Shot Deep Transfer Learning of Mixed Breed Cattle
par: Ali Shojaeipour, et autres
Publié: (2021) -
Optimizing Few-Shot Learning Based on Variational Autoencoders
par: Ruoqi Wei, et autres
Publié: (2021) -
Effect of Probabilistic Similarity Measure on Metric-Based Few-Shot Classification
par: Youngjae Lee, et autres
Publié: (2021)