Meta-Seg: A Generalized Meta-Learning Framework for Multi-Class Few-Shot Semantic Segmentation
Semantic segmentation performs pixel-wise classification for given images, which can be widely used in autonomous driving, robotics, medical diagnostics and etc. The recent advanced approaches have witnessed rapid progress in semantic segmentation. However, these supervised learning based methods re...
Guardado en:
Autores principales: | Zhiying Cao, Tengfei Zhang, Wenhui Diao, Yue Zhang, Xiaode Lyu, Kun Fu, Xian Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c733ea5763c84041ba4ff1446090b10c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Few-Shot Object Detection via Sample Processing
por: Honghui Xu, et al.
Publicado: (2021) -
Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification
por: Pei Zhang, et al.
Publicado: (2021) -
Automated Muzzle Detection and Biometric Identification via Few-Shot Deep Transfer Learning of Mixed Breed Cattle
por: Ali Shojaeipour, et al.
Publicado: (2021) -
Optimizing Few-Shot Learning Based on Variational Autoencoders
por: Ruoqi Wei, et al.
Publicado: (2021) -
Effect of Probabilistic Similarity Measure on Metric-Based Few-Shot Classification
por: Youngjae Lee, et al.
Publicado: (2021)