Machine learning accurate exchange and correlation functionals of the electronic density
Increasing the non-locality of the exchange and correlation functional in DFT theory comes at a steep increase in computational cost. Here, the authors develop NeuralXC, a supervised machine learning approach to generate density functionals close to coupled-cluster level of accuracy yet computationa...
Enregistré dans:
Auteurs principaux: | Sebastian Dick, Marivi Fernandez-Serra |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c73e995c4a8d4bd6bc4784577c3e540b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Pure non-local machine-learned density functional theory for electron correlation
par: Johannes T. Margraf, et autres
Publié: (2021) -
Exact exchange-correlation potentials from ground-state electron densities
par: Bikash Kanungo, et autres
Publié: (2019) -
Machine learned features from density of states for accurate adsorption energy prediction
par: Victor Fung, et autres
Publié: (2021) -
Accurate prediction of mega-electron-volt electron beam properties from UED using machine learning
par: Zhe Zhang, et autres
Publié: (2021) -
Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning
par: A. Sanchez-Gonzalez, et autres
Publié: (2017)