Machine learning accurate exchange and correlation functionals of the electronic density
Increasing the non-locality of the exchange and correlation functional in DFT theory comes at a steep increase in computational cost. Here, the authors develop NeuralXC, a supervised machine learning approach to generate density functionals close to coupled-cluster level of accuracy yet computationa...
Guardado en:
Autores principales: | Sebastian Dick, Marivi Fernandez-Serra |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c73e995c4a8d4bd6bc4784577c3e540b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Pure non-local machine-learned density functional theory for electron correlation
por: Johannes T. Margraf, et al.
Publicado: (2021) -
Exact exchange-correlation potentials from ground-state electron densities
por: Bikash Kanungo, et al.
Publicado: (2019) -
Machine learned features from density of states for accurate adsorption energy prediction
por: Victor Fung, et al.
Publicado: (2021) -
Accurate prediction of mega-electron-volt electron beam properties from UED using machine learning
por: Zhe Zhang, et al.
Publicado: (2021) -
Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning
por: A. Sanchez-Gonzalez, et al.
Publicado: (2017)