Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces

Let ℋ{\mathcal{ {\mathcal H} }} be a complex Hilbert space and ℬ(ℋ){\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) denotes the algebra of all bounded linear operators acting on ℋ{\mathcal{ {\mathcal H} }}. In this paper, we present some new pairs of generalized finite operators. More pre...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mesbah Nadia, Messaoudene Hadia, Alharbi Asma
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/c7595c086d1a4502998eb95fe51b1362
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Let ℋ{\mathcal{ {\mathcal H} }} be a complex Hilbert space and ℬ(ℋ){\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) denotes the algebra of all bounded linear operators acting on ℋ{\mathcal{ {\mathcal H} }}. In this paper, we present some new pairs of generalized finite operators. More precisely, new pairs of operators (A,B)∈ℬ(ℋ)×ℬ(ℋ)\left(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) satisfying: ∥AX−XB−I∥≥1,for allX∈ℬ(ℋ).\parallel AX-XB-I\parallel \ge 1,\hspace{1.0em}\hspace{0.1em}\text{for all}\hspace{0.1em}\hspace{0.33em}X\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}). An example under which the class of such operators is not invariant under similarity orbit is given. Range kernel orthogonality of generalized derivation is also studied.