Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces

Let ℋ{\mathcal{ {\mathcal H} }} be a complex Hilbert space and ℬ(ℋ){\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) denotes the algebra of all bounded linear operators acting on ℋ{\mathcal{ {\mathcal H} }}. In this paper, we present some new pairs of generalized finite operators. More pre...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mesbah Nadia, Messaoudene Hadia, Alharbi Asma
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/c7595c086d1a4502998eb95fe51b1362
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c7595c086d1a4502998eb95fe51b1362
record_format dspace
spelling oai:doaj.org-article:c7595c086d1a4502998eb95fe51b13622021-12-05T14:10:45ZSome results on generalized finite operators and range kernel orthogonality in Hilbert spaces2391-466110.1515/dema-2021-0037https://doaj.org/article/c7595c086d1a4502998eb95fe51b13622021-10-01T00:00:00Zhttps://doi.org/10.1515/dema-2021-0037https://doaj.org/toc/2391-4661Let ℋ{\mathcal{ {\mathcal H} }} be a complex Hilbert space and ℬ(ℋ){\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) denotes the algebra of all bounded linear operators acting on ℋ{\mathcal{ {\mathcal H} }}. In this paper, we present some new pairs of generalized finite operators. More precisely, new pairs of operators (A,B)∈ℬ(ℋ)×ℬ(ℋ)\left(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) satisfying: ∥AX−XB−I∥≥1,for allX∈ℬ(ℋ).\parallel AX-XB-I\parallel \ge 1,\hspace{1.0em}\hspace{0.1em}\text{for all}\hspace{0.1em}\hspace{0.33em}X\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}). An example under which the class of such operators is not invariant under similarity orbit is given. Range kernel orthogonality of generalized derivation is also studied.Mesbah NadiaMessaoudene HadiaAlharbi AsmaDe Gruyterarticlefinite operatornumerical rangeorthogonalityclass ℛ¯147b4747a3047a12MathematicsQA1-939ENDemonstratio Mathematica, Vol 54, Iss 1, Pp 318-325 (2021)
institution DOAJ
collection DOAJ
language EN
topic finite operator
numerical range
orthogonality
class ℛ¯1
47b47
47a30
47a12
Mathematics
QA1-939
spellingShingle finite operator
numerical range
orthogonality
class ℛ¯1
47b47
47a30
47a12
Mathematics
QA1-939
Mesbah Nadia
Messaoudene Hadia
Alharbi Asma
Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
description Let ℋ{\mathcal{ {\mathcal H} }} be a complex Hilbert space and ℬ(ℋ){\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) denotes the algebra of all bounded linear operators acting on ℋ{\mathcal{ {\mathcal H} }}. In this paper, we present some new pairs of generalized finite operators. More precisely, new pairs of operators (A,B)∈ℬ(ℋ)×ℬ(ℋ)\left(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) satisfying: ∥AX−XB−I∥≥1,for allX∈ℬ(ℋ).\parallel AX-XB-I\parallel \ge 1,\hspace{1.0em}\hspace{0.1em}\text{for all}\hspace{0.1em}\hspace{0.33em}X\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}). An example under which the class of such operators is not invariant under similarity orbit is given. Range kernel orthogonality of generalized derivation is also studied.
format article
author Mesbah Nadia
Messaoudene Hadia
Alharbi Asma
author_facet Mesbah Nadia
Messaoudene Hadia
Alharbi Asma
author_sort Mesbah Nadia
title Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
title_short Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
title_full Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
title_fullStr Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
title_full_unstemmed Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
title_sort some results on generalized finite operators and range kernel orthogonality in hilbert spaces
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/c7595c086d1a4502998eb95fe51b1362
work_keys_str_mv AT mesbahnadia someresultsongeneralizedfiniteoperatorsandrangekernelorthogonalityinhilbertspaces
AT messaoudenehadia someresultsongeneralizedfiniteoperatorsandrangekernelorthogonalityinhilbertspaces
AT alharbiasma someresultsongeneralizedfiniteoperatorsandrangekernelorthogonalityinhilbertspaces
_version_ 1718371769985794048