Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications

In this paper, silver (Ag) nanoparticles were synthesized by utilizing an aqueous extract of fresh leaves of Chenopodium murale which is considered a cost-effective and eco-friendly approach. The sol-gel technique was used to syntheses TiO2 nanoparticles and different methods were used to characteri...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M.M. Abutalib, A. Rajeh
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
XRD
Acceso en línea:https://doaj.org/article/c75fca6682434d12baaafc67a33e6fb3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c75fca6682434d12baaafc67a33e6fb3
record_format dspace
spelling oai:doaj.org-article:c75fca6682434d12baaafc67a33e6fb32021-11-24T04:26:18ZEnhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications0142-941810.1016/j.polymertesting.2020.107013https://doaj.org/article/c75fca6682434d12baaafc67a33e6fb32021-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S014294182032242Xhttps://doaj.org/toc/0142-9418In this paper, silver (Ag) nanoparticles were synthesized by utilizing an aqueous extract of fresh leaves of Chenopodium murale which is considered a cost-effective and eco-friendly approach. The sol-gel technique was used to syntheses TiO2 nanoparticles and different methods were used to characterize the nanoparticles (Ag and TiO2) including UV–Vis spectroscopy, XRD, and TEM. Also, new nanocomposites were prepared using the solution casting method. The prepared films were characterized by different analytical methods. The absorption peak of the silver nanoparticles shown by the UV–visible spectrum was around 430 nm. The crystalline average size of the Ag NPs was 20 nm while TiO2 NPs was 15 nm as displayed by the XRD pattern. Meanwhile, the degree of amorphicity of the Cs/PEO blend was increased as a result of adding Ag and TiO2 NPs. It was evident through the FTIR spectroscopy that there was an interaction between the functional groups of the polymer blend and the Ag/TiO2 nanofiller. In addition, there was an increase of mechanical properties of the prepared films such as the Young's modulus, elongation, and tensile strength with increasing the Ag/TiO2 content. It was clear through the impedance spectroscopic study that the iconic conductivity was improved with the addition of Ag and TiO2 nanoparticles into the polymer blend system. The highest conductivity was log −9.34 S cm−1 at Cs/PEO/0.3%Ag/0.8%TiO2. It was also evident from the results that the antibacterial activity of the pure Cs/PEO blend was increased as a result of doping Ag/TiO2 nanoparticles to the polymer blend. The activity index (%) of the antibacterial activity at sample blend + (0.3%) Ag + (0.8%) TiO2 of the E. coli, S. aureus, C. Albicans, A. niger was 32, 45.8, 77.8, and 92 (%) respectively. Thus, these results indicate the applicability and potential of the nanocomposites for use in food packaging applications.M.M. AbutalibA. RajehElsevierarticleGreen synthesisAg NPs and TiO2 NPsXRDMechanical propertiesAntibacterial activityPolymers and polymer manufactureTP1080-1185ENPolymer Testing, Vol 93, Iss , Pp 107013- (2021)
institution DOAJ
collection DOAJ
language EN
topic Green synthesis
Ag NPs and TiO2 NPs
XRD
Mechanical properties
Antibacterial activity
Polymers and polymer manufacture
TP1080-1185
spellingShingle Green synthesis
Ag NPs and TiO2 NPs
XRD
Mechanical properties
Antibacterial activity
Polymers and polymer manufacture
TP1080-1185
M.M. Abutalib
A. Rajeh
Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications
description In this paper, silver (Ag) nanoparticles were synthesized by utilizing an aqueous extract of fresh leaves of Chenopodium murale which is considered a cost-effective and eco-friendly approach. The sol-gel technique was used to syntheses TiO2 nanoparticles and different methods were used to characterize the nanoparticles (Ag and TiO2) including UV–Vis spectroscopy, XRD, and TEM. Also, new nanocomposites were prepared using the solution casting method. The prepared films were characterized by different analytical methods. The absorption peak of the silver nanoparticles shown by the UV–visible spectrum was around 430 nm. The crystalline average size of the Ag NPs was 20 nm while TiO2 NPs was 15 nm as displayed by the XRD pattern. Meanwhile, the degree of amorphicity of the Cs/PEO blend was increased as a result of adding Ag and TiO2 NPs. It was evident through the FTIR spectroscopy that there was an interaction between the functional groups of the polymer blend and the Ag/TiO2 nanofiller. In addition, there was an increase of mechanical properties of the prepared films such as the Young's modulus, elongation, and tensile strength with increasing the Ag/TiO2 content. It was clear through the impedance spectroscopic study that the iconic conductivity was improved with the addition of Ag and TiO2 nanoparticles into the polymer blend system. The highest conductivity was log −9.34 S cm−1 at Cs/PEO/0.3%Ag/0.8%TiO2. It was also evident from the results that the antibacterial activity of the pure Cs/PEO blend was increased as a result of doping Ag/TiO2 nanoparticles to the polymer blend. The activity index (%) of the antibacterial activity at sample blend + (0.3%) Ag + (0.8%) TiO2 of the E. coli, S. aureus, C. Albicans, A. niger was 32, 45.8, 77.8, and 92 (%) respectively. Thus, these results indicate the applicability and potential of the nanocomposites for use in food packaging applications.
format article
author M.M. Abutalib
A. Rajeh
author_facet M.M. Abutalib
A. Rajeh
author_sort M.M. Abutalib
title Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications
title_short Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications
title_full Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications
title_fullStr Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications
title_full_unstemmed Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications
title_sort enhanced structural, electrical, mechanical properties and antibacterial activity of cs/peo doped mixed nanoparticles (ag/tio2) for food packaging applications
publisher Elsevier
publishDate 2021
url https://doaj.org/article/c75fca6682434d12baaafc67a33e6fb3
work_keys_str_mv AT mmabutalib enhancedstructuralelectricalmechanicalpropertiesandantibacterialactivityofcspeodopedmixednanoparticlesagtio2forfoodpackagingapplications
AT arajeh enhancedstructuralelectricalmechanicalpropertiesandantibacterialactivityofcspeodopedmixednanoparticlesagtio2forfoodpackagingapplications
_version_ 1718416000651624448