Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence
Eddy heat fluxes crucially affect large-scale oceanic currents but are challenging to monitor on a global scale. Here the authors develop a Deep Learning model to predict the eddy heat fluxes from sea surface height data only, bypassing the need for simultaneous observations of the deep ocean.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c7651d6337f64a0bb9c40bf8010fa9bc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c7651d6337f64a0bb9c40bf8010fa9bc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c7651d6337f64a0bb9c40bf8010fa9bc2021-12-02T14:06:23ZDeep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence10.1038/s41467-020-20779-92041-1723https://doaj.org/article/c7651d6337f64a0bb9c40bf8010fa9bc2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20779-9https://doaj.org/toc/2041-1723Eddy heat fluxes crucially affect large-scale oceanic currents but are challenging to monitor on a global scale. Here the authors develop a Deep Learning model to predict the eddy heat fluxes from sea surface height data only, bypassing the need for simultaneous observations of the deep ocean.Tom M. GeorgeGeorgy E. ManucharyanAndrew F. ThompsonNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Tom M. George Georgy E. Manucharyan Andrew F. Thompson Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence |
description |
Eddy heat fluxes crucially affect large-scale oceanic currents but are challenging to monitor on a global scale. Here the authors develop a Deep Learning model to predict the eddy heat fluxes from sea surface height data only, bypassing the need for simultaneous observations of the deep ocean. |
format |
article |
author |
Tom M. George Georgy E. Manucharyan Andrew F. Thompson |
author_facet |
Tom M. George Georgy E. Manucharyan Andrew F. Thompson |
author_sort |
Tom M. George |
title |
Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence |
title_short |
Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence |
title_full |
Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence |
title_fullStr |
Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence |
title_full_unstemmed |
Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence |
title_sort |
deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/c7651d6337f64a0bb9c40bf8010fa9bc |
work_keys_str_mv |
AT tommgeorge deeplearningtoinfereddyheatfluxesfromseasurfaceheightpatternsofmesoscaleturbulence AT georgyemanucharyan deeplearningtoinfereddyheatfluxesfromseasurfaceheightpatternsofmesoscaleturbulence AT andrewfthompson deeplearningtoinfereddyheatfluxesfromseasurfaceheightpatternsofmesoscaleturbulence |
_version_ |
1718392048257597440 |