Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence

Eddy heat fluxes crucially affect large-scale oceanic currents but are challenging to monitor on a global scale. Here the authors develop a Deep Learning model to predict the eddy heat fluxes from sea surface height data only, bypassing the need for simultaneous observations of the deep ocean.

Guardado en:
Detalles Bibliográficos
Autores principales: Tom M. George, Georgy E. Manucharyan, Andrew F. Thompson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/c7651d6337f64a0bb9c40bf8010fa9bc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c7651d6337f64a0bb9c40bf8010fa9bc
record_format dspace
spelling oai:doaj.org-article:c7651d6337f64a0bb9c40bf8010fa9bc2021-12-02T14:06:23ZDeep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence10.1038/s41467-020-20779-92041-1723https://doaj.org/article/c7651d6337f64a0bb9c40bf8010fa9bc2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20779-9https://doaj.org/toc/2041-1723Eddy heat fluxes crucially affect large-scale oceanic currents but are challenging to monitor on a global scale. Here the authors develop a Deep Learning model to predict the eddy heat fluxes from sea surface height data only, bypassing the need for simultaneous observations of the deep ocean.Tom M. GeorgeGeorgy E. ManucharyanAndrew F. ThompsonNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tom M. George
Georgy E. Manucharyan
Andrew F. Thompson
Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence
description Eddy heat fluxes crucially affect large-scale oceanic currents but are challenging to monitor on a global scale. Here the authors develop a Deep Learning model to predict the eddy heat fluxes from sea surface height data only, bypassing the need for simultaneous observations of the deep ocean.
format article
author Tom M. George
Georgy E. Manucharyan
Andrew F. Thompson
author_facet Tom M. George
Georgy E. Manucharyan
Andrew F. Thompson
author_sort Tom M. George
title Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence
title_short Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence
title_full Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence
title_fullStr Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence
title_full_unstemmed Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence
title_sort deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c7651d6337f64a0bb9c40bf8010fa9bc
work_keys_str_mv AT tommgeorge deeplearningtoinfereddyheatfluxesfromseasurfaceheightpatternsofmesoscaleturbulence
AT georgyemanucharyan deeplearningtoinfereddyheatfluxesfromseasurfaceheightpatternsofmesoscaleturbulence
AT andrewfthompson deeplearningtoinfereddyheatfluxesfromseasurfaceheightpatternsofmesoscaleturbulence
_version_ 1718392048257597440