Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence
Eddy heat fluxes crucially affect large-scale oceanic currents but are challenging to monitor on a global scale. Here the authors develop a Deep Learning model to predict the eddy heat fluxes from sea surface height data only, bypassing the need for simultaneous observations of the deep ocean.
Guardado en:
Autores principales: | Tom M. George, Georgy E. Manucharyan, Andrew F. Thompson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c7651d6337f64a0bb9c40bf8010fa9bc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss
por: Thomas W. K. Armitage, et al.
Publicado: (2020) -
Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea
por: Peter Gaube, et al.
Publicado: (2018) -
Oceanic eddy-induced modifications to air–sea heat and CO2 fluxes in the Brazil-Malvinas Confluence
por: Luciano P. Pezzi, et al.
Publicado: (2021) -
Mesoscale eddies are oases for higher trophic marine life.
por: Olav R Godø, et al.
Publicado: (2012) -
Connectivity Analysis Applied to Mesoscale Eddies in the Western Mediterranean Basin
por: Yuri Cotroneo, et al.
Publicado: (2021)