Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence
Eddy heat fluxes crucially affect large-scale oceanic currents but are challenging to monitor on a global scale. Here the authors develop a Deep Learning model to predict the eddy heat fluxes from sea surface height data only, bypassing the need for simultaneous observations of the deep ocean.
Enregistré dans:
Auteurs principaux: | Tom M. George, Georgy E. Manucharyan, Andrew F. Thompson |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c7651d6337f64a0bb9c40bf8010fa9bc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss
par: Thomas W. K. Armitage, et autres
Publié: (2020) -
Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea
par: Peter Gaube, et autres
Publié: (2018) -
Oceanic eddy-induced modifications to air–sea heat and CO2 fluxes in the Brazil-Malvinas Confluence
par: Luciano P. Pezzi, et autres
Publié: (2021) -
Mesoscale eddies are oases for higher trophic marine life.
par: Olav R Godø, et autres
Publié: (2012) -
Connectivity Analysis Applied to Mesoscale Eddies in the Western Mediterranean Basin
par: Yuri Cotroneo, et autres
Publié: (2021)